1 закон кеплера формулировка. Основы астрономии

1 закон кеплера формулировка. Основы астрономии

03.03.2024

В микромире при взаимодействии элементарных частиц - атомов, молекул - ядерные и электромагнитные взаимодействия являются главенствующими. Наблюдать гравитационное взаимодействие элементарных частиц практически невозможно. Ученым приходится прибегать к очень большим ухищрениям для того, чтобы измерить гравитационное взаимодействие тел, масса которых составляет сотни, тысячи килограмм. Однако в космических масштабах все остальные взаимодействия, кроме гравитационного, практически незаметны. Движение планет, спутников, астероидов, комет, звезд в галактике полностью описывается гравитационным взаимодействием.

Он предложил поместить Землю в центр Вселенной, а движения планет описывались большими и малыми кругами, которые были названы эпициклами Птолемея.

Только в XVI веке Коперник предложил заменить геоцентрическую модель мира Птолемея на гелиоцентрическую. То есть поместить Солнце в центр Вселенной и предположить, что все планеты и Земля вместе с ними движутся вокруг Солнца (рис. 2).

Рис. 2. Гелиоцентрическая модель Н.Коперника ()

В начале XVII века немецкий астроном Иоганн Кеплер, обработав огромное количество астрономической информации, полученной датским астрономом Тихо Браге, предложил свои эмпирические законы, которые с тех пор носят название законы Кеплера.

Все планеты Солнечной Системы движутся по некоторым кривым, которые называются эллипс. Эллипс - это одна из простейших математических кривых, так называемая кривая второго порядка. В Средние века их называли коническими пересечениями - если пересечь конус или цилиндр некоторой плоскостью, то получим ту самую кривую, по которой движутся планеты Солнечной системы.

Рис. 3. Кривая движения планет ()

Эта кривая (Рис. 3) имеет две выделенные точки, которые называются фокусы. Для каждой точки эллипса сумма расстояний от нее до фокусов одинакова. В одном из этих фокусов находится центр Солнце (F), ближняя к Солнцу точка кривой (P) носит название перигелий, а самая дальняя (A) - афелий. Расстояние от перигелия до центра эллипса называется большой полуосью, а расстояние от центра эллипса по вертикали до эллипса малой полуосью эллипса.

В процессе движения планеты по эллипсу радиус-вектор, соединяющий центр Солнца с этой планетой, описывает некоторую площадь. Например, за время ∆t планета переместилась из одной точки в другую, радиус-вектор описал некоторую площадь ∆S.

Рис. 4. Второй закон Кеплера ()

Второй закон Кеплера гласит: за одинаковые промежутки времени радиус-вектора планет описывают одинаковые площади.

На рисунке 4 изображен угол ∆Θ, это угол поворота радиус-вектора за некоторое время ∆t и импульс планеты (), направленный по касательной к траектории, разложенный на две составляющие - составляющая импульса по радиус-вектору () и составляющая импульсов, в направлении, перпендикулярном радиус-вектору(⊥).

Произведем вычисления, связанные со вторым законом Кеплера. Утверждение Кеплера, что за равные промежутки проходятся равные площади, означает, что отношение этих величин есть величина постоянная. Отношение этих величин часто называют секторальной скоростью, это скорость изменения положения радиус-вектора. Какова же площадь ∆S, которую заметает радиус-вектор за время ∆t? Это площадь треугольника, высота которого примерно равна радиус-вектору, а основание примерно равно r ∆ω, воспользовавшись этим утверждением, напишем величину ∆S в виде ½ высоты на основание и разделим на ∆t, получим выражение:

, это скорость изменения угла, то есть угловая скорость.

Окончательный результат:

,

Квадрат расстояния до центра Солнца, умноженный на угловую скорость движения в данный момент времени, есть величина постоянная.

Но если мы умножим выражение r 2 ω на массу тела m, то получим величину, которую можно представить в виде произведения длины радиус-вектора на импульс в направлении, поперечном к радиус-вектору:

Эта величина, равная произведению радиус-вектора на перпендикулярную составляющую импульса, носит название «момент количества движения».

Второй закон Кеплера есть утверждение о том, что момент количества движения в гравитационном поле - величина сохраняющаяся. Отсюда следует простое, но очень важное утверждение: в точках наименьшего и наибольшего расстояния до центра Солнца, то есть афелий и перигелий, скорость направлена перпендикулярно к радиус-вектору, поэтому произведение радиус-вектора на скорость в одной точке равно этому произведению в другой точке.

Третий закон Кеплера утверждает, что отношение квадрата периода обращения планеты вокруг Солнца к кубу большой полуоси есть величина одинаковая для всех планет Солнечной системы.

Рис. 5. Произвольные траектории планет ()

На рисунке 5 представлены две произвольные траектории планет. Одна имеет явный вид эллипса с длиной полуоси (a), вторая имеет вид окружности с радиусом (R), время обращения по любой из этих траекторий, то есть период обращения, связан с длиной полуоси или с радиусом. А если эллипс превращается в окружность, то большая полуось как раз и становится радиусом этой окружности. Третий закон Кеплера утверждает, что в том случае, когда длина большой полуоси равна радиусу окружности, периоды обращения планет вокруг Солнца будут одинаковыми.

Для случая окружности можно вычислить это отношение, пользуясь вторым законом Ньютона и законом движения тела по окружности, эта константа есть 4π 2 , деленное на постоянную всемирного тяготения (G) и массу Солнца (M).

Таким образом, видно, что, если обобщить гравитационные взаимодействия, как это сделал Ньютон, и предположить, что все тела участвуют в гравитационном взаимодействии, законы Кеплера можно распространять на движение спутников вокруг Земли, на движение спутников вокруг любой другой планеты и даже на движение спутников Луны вокруг центра Луны. Только в правой части этой формулы буква М будет означать массу того тела, которое притягивает к себе спутники. Все спутники данного космического объекта будут иметь одинаковое отношение квадрата периода обращения (Т 2) к кубу большой полуоси (а 3). Этот закон может быть распространен на вообще все тела во Вселенной и даже на звезды, из которых состоит наша Галактика.

Во второй половине ХХ века было замечено, что некоторые звезды, которые находятся достаточно далеко от центра нашей Галактики, не подчиняются этому закону Кеплера. Это означает, что мы не всё знаем о том, как действует гравитация в размерах нашей Галактики. Одним из возможных объяснений того, почему далекие звезды движутся быстрее, чем это требуется по третьему закону Кеплера, оказалось следующее: мы видим не всю массу Галактики. Значительная ее часть может состоять из вещества, которое не наблюдаемо нашими приборами, не взаимодействует электромагнитно, не излучает и не поглощает свет, а участвует только в гравитационном взаимодействии. Такое вещество было названо скрытой массой или темной материей. Проблемы темной материи - это одна из основных проблем физики XXI века.

Тема следующего урока: системы материальных точек, центр масс, закон движения центра масс.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Кабардин О.Ф., Орлов В.А., Эвенчик Э.Е Физика-10. М.: Просвещение, 2010.
  3. Открытая физика ()
  1. Elementy.ru ().
  2. Physics.ru ().
  3. Ency.info ().

Домашнее задание

  1. Дать определение первому закону Кеплера.
  2. Дать определение второму закону Кеплера.
  3. Дать определение третьему закону Кеплера.

Коль скоро на сайте завелись "разоблачители", утверждающие, что математика - это ересь, а гравитационного притяжения между планетами вообще не существует, давайте посмотрим, как закон всемирного тяготения позволяет описать явления, установленные эмпирическим путем. Ниже представлено математическое обоснование первого закона Кеплера.

1. Исторический экскурс

Для начала вспомним, как вообще этот закон появился на свет. В 1589 году некто Иоганн Кеплер (1571 - 1630) - выходец из бедной немецкой семьи - заканчивает школу и поступает в Тюбингенский университет. Там он занимается математикой и астрономией. Причем его учитель профессор Местлин, будучи тайным поклонником идей Коперника (гелиоцентрическая система мира), преподает в университете "правильную" теорию - систему мира Птолемея (т.е. геоцентрическую). Что, впрочем, не мешает ему познакомить своего ученика с идеями Коперника, и вскоре тот сам становится убежденным сторонником этой теории.

В 1596 году Кеплер издает свою "Космографическую тайну". Хотя работа представляет сомнительную научную ценность даже по тем временам, тем не менее она не остается незамеченной для датского астронома Тихо Браге, который вел астрономические наблюдения и вычисления уже на протяжении четверти века. Тот замечает самостоятельность мышления молодого ученого и знания им астрономии.

С 1600 года Иоганн работает помощником Браге. После его смерти в 1601 году Кеплер начинает изучать результаты трудов Тихо Браге - данные многолетних астрономических наблюдений. Дело в том, что к концу XVI века прусские таблицы (таблицы движения небесных тел, вычисленные на основе учений Коперника) стали давать существенные расхождения с наблюдаемыми данными: ошибка в положении планет доходила до 4-5 0 .

Для решения проблемы Кеплер был вынужден усложнить теорию Коперника. Он отказывается от идеи о том, что планеты движутся по круговым орбитам, что в конечном итоге позволяет ему решить проблему с расхождением теории с наблюдаемыми данными. Согласно его выводам, планеты движутся по орбитам, имеющим форму эллипса, причем Солнце находится в одном из его фокусов. Так что расстояние между планетой и Солнцем периодически меняется. Этот вывод известен как первый закон Кеплера .

2. Математическое обоснование

Посмотрим теперь, как первый закон Кеплера согласуется с законом всемирного тяготения. Для этого выведем закон движения тела в гравитационном поле, обладающем сферической симметрией. В этом случае выполняется закон сохранения момента импульса тела $\vec{L}=[\vec{r},\vec{p}]$. Это значит, что тело будет двигаться в плоскости, перпендикулярной вектору $\vec{L}$, причем ориентация этой плоскости в пространстве неизменна. В таком случае удобно использовать полярную систему координат $(r, \phi)$ с началом в источнике гравитационного поля (т.е. вектор $\vec{r}$ перпендикулярен вектору $\vec{L}$). Т.е. одно из тел (Солнце) мы помещаем в начало координат, и ниже выведем закон движения второго тела (планеты) в этом случае.

Нормальная и тангенциальная составляющие вектора скорости второго тела в выбранной системе координат выражаются следующими соотношениями (здесь и далее точка означает производную по времени):

$$ V_{r}=\dot{r}; V_{n}=r\dot{\phi} $$

Закон сохранения энергии и момента импульса в этом случае имеют следующий вид:

$$E = \frac{m\dot{r}^2}{2}+\frac{m(r\dot{\phi})^2}{2}-\frac{GMm}{r}=const \hspace{3cm}(2.1)$$ $$L = mr^2\dot{\phi}=const \hspace{3cm}(2.2)$$

Здесь $G$ - гравитационная постоянная, $M$ - масса центрального тела, $m$ - масса "спутника", $E$ - полная механическая энергия "спутника", $L$ - величина его момента импульса.

Выражая $\dot{\phi}$ из (2.2) и подставляя его в (2.1), получаем:

$$ E = \frac{m\dot{r}^2}{2}+\frac{L^2}{2mr^2}-\frac{GMm}{r} \hspace{3cm}(2.3) $$

Перепишем полученное соотношение следующим образом:

$$ dt=\frac{dr}{\sqrt{\frac{2}{m}(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.4)$$

Из соотношения (2.2) следует:

$$ d\phi=\frac{L}{mr^2}dt $$

Подставляя вместо $dt$ выражение (2.4), получаем:

$$ d\phi=\frac{L}{r^2}\frac{dr}{\sqrt{2m(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.5) $$

Чтобы проинтегрировать полученное выражение, перепишем выражение, стоящее под корнем в скобках, в следующем виде:

$$ E-((\frac{GMm^{3/2}}{\sqrt{2}L})^2 - \frac{GMm}{r} + \frac{L^2}{2mr^2}) + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =E-(\frac{GMm^{3/2}}{\sqrt{2}L}-\frac{L}{r\sqrt{2mr}})^2 + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =\frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2) $$

Введем следующее обозначение:

$$ \frac{GMm^2}{L^2}\equiv\frac{1}{p} $$

Продолжая преобразования, получаем:

$$ \frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{2mE}{L^2} + \frac{1}{p^2}-(\frac{1}{p}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{1}{p^2}(1+\frac{2EL^2}{(GM)^2m^3})-(\frac{1}{p}-\frac{1}{r})^2) $$

Введем обозначение:

$$ 1+\frac{2EL^2}{(GM)^2m^3} \equiv e^2 $$

В этом случае преобразуемое выражение принимает следующий вид:

$$ \frac{L^2e^2}{2mp^2}(1-(\frac{p}{e} (\frac{1}{p}-\frac{1}{r}))^2) $$

Введем для удобства следующую переменную:

$$ z=\frac{p}{e} (\frac{1}{p}-\frac{1}{r}) $$

Теперь уравнение (2.5) принимает вид:

$$ d\phi=\frac{p}{er^2}\frac{dr}{\sqrt{1-z^2}}=\frac{dz}{\sqrt{1-z^2}}\hspace{3cm}(2.6) $$

Проинтегрируем полученное выражение:

$$ \phi(r)=\int\frac{dz}{\sqrt{1-z^2}}=\arcsin{z}-\phi_0 $$

Здесь $\phi_0$ - конатснта интегрирования.

Наконец, получаем закон движения:

$$ r(\phi)=\frac{p}{1-e\sin{(\phi+\phi_0)}} $$

Положив константу интегрирования $\phi_0=\frac{3\pi}{2}$ (данное значение соответствует экстремуму функции $r(\phi)$), окончательно получаем:

$$r(\phi)=\frac{p}{1+e\cos{\phi}} \hspace{3cm}(2.7)$$ $$p=\frac{L^2}{GMm^2}$$ $$e=\sqrt{1+\frac{2EL^2}{(GM)^2m^3}}$$

Из курса аналитической геометрии известно, что выражение, полученное для функции $r(\phi)$, описывает кривые второго порядка: эллипс, параболу и гиперболу. Параметры $p$ и $e$ называют, соответственно, фокальным параметром и эксцентриситетом кривой. Фокальный параметр может принимать любое положительное значение, а величина эксцентриситета определяет вид траектории: если $e\in}

© 2024 skypenguin.ru - Советы по уходу за домашними животными