Анилин представитель аминов химическое строение и свойства. Анилин - представитель ароматических аминов, его практическое применение

Анилин представитель аминов химическое строение и свойства. Анилин - представитель ароматических аминов, его практическое применение

23.01.2024

Урок 4 . Анилин как представитель ароматических аминов

Состав и строение, молекулярная и структурная формулы;

Взаимное влияние атомов в молекуле;

Физические свойства;

Химические свойства: реакции анилина по аминогруппе и ароматическому ядру.

Состав и строение, молекулярная и структурная формулы . Анили́н (аминобензол, фениламин) - органическое соединение с формулой C 6 H 5 NH 2 , состоит из бензольного кольца, в котором один атом водорода замещен на аминогруппу. Простейший ароматический амин. Структурная формула:

Впервые анилин получил в 1826 в процессе перегонки индиго с известью немецкий химик, который дал ему название «кристаллины». 1834 Ф. Рунге обнаружил анилин в каменноугольной смоле и назвал «кианолом». 1841 Ю. Ф. Фришце получил анилин в результате нагрева индиго с раствором КОН и назвал его «анилином». 1842 анилин получил М. М. Зинин путем восстановления нитробензола (NH 4) 2 SO 3 и назвал его «бензидамом». 1843 А. В. Гофман установил идентичность всех перечисленных соединений. Слово «анилин» происходит от названия одного из растений, содержащих индиго.

Взаимное влияние атомов в молекуле .

Влияние аминогруппы на свойства бензольного кольца. По отношению к кольцу аминогруппа выступает донором электронов, т.е. нагнетает на кольцо электронную плотность. Эта избыточная плотность в кольце в основном сосредота­чивается в положениях 2,4,6 (орто - и ядра-положениях):


В результате: 1) реакции замещения в кольце для ани­лина протекают легче, чем для бензола; 2) вступающий в кольцо заместитель направляется аминогруппой преиму­щественно в положения 2,4,6.

Влияние кольца на свойства аминогруппы. Ароматиче­ское кольцо оттягивает часть электронной плотности с атома азота, вовлекая ее в сопряжение с л-системой. Поэтому ос­новные свойства анилина выражены слабее, чем у аммиака и тем более, чем у алифатических аминов. Водный раствор анилина не изменяет окраску индикаторов. В этом и состо­ит влияние бензольного кольца на свойства аминогруппы.

Изучение среды раствора анилина http://my.mail.ru/mail/ntl0000/video/29154/31055.html?related_deep=1

Физические свойства . Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит

Физические свойства анилина https://www.youtube.com/watch?v=2c6J-4sNGPc

Химические свойства . Обязательно просмотрите видео .

Химические свойства https://www.youtube.com/watch?v=qQ6zqUXDJdk

Анилин в отличие от бензола легко реагирует с бромной водой с образованием белого нерастворимого в воде осадка 2,4,6-триброманилина:


Аналогично протекает реакция анилина с раствором хлора в СС1 4 , этаноле.

Анилин практически не реагирует с водой (очень слабые основные свойства); основные свойства анилина проявля­ются в реакциях с сильными минеральными кислотами:


Анилин реагирует с хлорангидридом уксусной кислоты:


При обработке таких солей водными растворами щело­чей можно выделить анилин:

Окисление анилина https://www.youtube.com/watch?v=nvxipFGxTRk

Взаимодействие анилина с соляной кислотой https://www.youtube.com/watch?v=VNUTpSaWQ0Q

Бромирование анилина https://www.youtube.com/watch?v=1UPJceDpelY

Пары анилина сгорают в избытке кислорода

4C 6 H 5 –NH 2 + 31O 2 → 24CO 2 + 14H 2 O + 2N 2

Горение анилина https://www.youtube.com/watch?v=cYtCWMczFFs

Основные свойства анилина:

а) ароматический амин – анилин имеет большое практическое значение;

б) анилин C 6 H 5 NH 2 – это бесцветная жидкость, которая плохо растворяется в воде;

в) имеет светло-коричневую окраску при частичном окислении на воздухе;

г) анилин сильно ядовит.

Основные свойства у анилина проявляются слабее, чем у аммиака и аминов предельного ряда.

1. Анилин не изменяет окраски лакмуса, но при взаимодействии с кислотами образует соли.

2. Если к анилину прилить концентрированную соляную кислоту, то происходит экзотермическая реакция и после охлаждения смеси можно наблюдать образование кристаллов соли: + Cl - – хлорид фениламмония.

3. Если на раствор хлорида фениламмония подействовать раствором щелочи, то снова выделится анилин: [С 6 Н 5 NН 3 ] + + Сl - + Nа + + ОН - → Н 2 О + С 6 Н 5 NН 2 + Nа + + СI - . Здесь выражено влияние ароматического радикала фенила – С 6 Н 5 .

4. В анилине C 6 H 5 NH 2 бензольное ядро смещает к себе неподеленную электронную пару азота аминогруппы. При этом электронная плотность на азоте уменьшается и он слабее связывает ион водорода, а это значит, что свойства вещества как основания проявляются в меньшей степени.

5. Аминогруппа влияет на бензольное ядро.

6. Бром в водном растворе не реагирует с бензолом.

Способы применения анилина:

1) анилин – один из важнейших продуктов химической промышленности;

2) он является исходным веществом для получения многочисленных анилиновых красителей;

3) анилин используется при получении лекарственных веществ, например сульфаниламидных препаратов, взрывчатых веществ, высокомолекулярных соединений и т. д. Открытие профессором Казанского университета Н.Н. Зининым (1842 г.) доступного способа получения анилина имело большое значение для развития химии и химической промышленности.

1. Промышленность органического синтеза началась с производства красителей.

2. Широкое развитие этого производства стало возможным на основе использования реакции получения анилина, известной сейчас в химии под названием реакции Зинина.

Особенности реакции Зинина:

1) эта реакция заключается в восстановлении нитробензола и выражается уравнением:

С 6 Н 5 -NO 2 + 6Н → С 6 Н 5 -NН 2 + 2Н 2 О;

2) распространенным промышленным способом получения анилина является восстановление нитробензола металлами, например железом (чугунными стружками), в кислой среде;

3) восстановление нитросоединений соответствующего строения – это общий способ получения аминов.

74. Аминокислоты

Строение и физические свойства.

1. Аминокислоты – это вещества, в молекулах которых содержатся одновременно аминогруппа NН 2 и карбоксильная группа – СООН.

Например: NH 2 -CH 2 -COOH – аминоуксусная кислота, CH 3 -CH(NH 2)-COOH – аминопропионовая кислота.

2. Аминокислоты – это бесцветные кристаллические вещества, растворимые в воде.

3. Многие аминокислоты имеют сладкий вкус.

4. Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой. При этом аминогруппа может находится у разных атомов углерода, что обусловливает один из видов изомерии аминокислот.

Некоторые представители аминокислот:

1) аминоуксусная кислота Н 2 N-СН 2 -СООН;

2) аминопропионовая кислота Н 2 N-СН 2 -СН 2 -СООН;

3) аминомасляная кислота Н 2 N-СН 2 -СН 2 -СН 2 -СООН;

4) аминовалериановая кислота Н 2 N-(СН 2) 4 -СООН;

5) аминокапроновая кислота Н 2 N-(СН 2) 5 -СООН.

5. Чем больше атомов углерода в молекуле аминокислоты, тем больше может существовать изомеров с различным положением аминогруппы по отношению к карбоксильной группе.

6. Чтобы в названии изомеров можно было указывать положение группы – NH 2 по отношению к карбоксилу, атомы углерода в молекуле аминокислоты обозначаются последовательно буквами греческого алфавита: а) α-аминокапроновая кислота; б) β-аминокапроновая кислота.

Особенности строения аминокислот заключаются в изомерии, которая может быть обусловлена также разветвлением углеродного скелета, а также строением своей углеродной цепи.

Способы применения аминокислот:

1) аминокислоты широко распространены в природе;

2) молекулы аминокислот – это те кирпичики, из которых построены все растительные и животные белки; аминокислоты, необходимые для построения белков организма, человек и животные получают в составе белков пищи;

3) аминокислоты прописываются при сильном истощении, после тяжелых операций;

4) их используют для питания больных, минуя желудочно-кишечный тракт;

5) аминокислоты необходимы в качестве лечебного средства при некоторых болезнях (например, глутаминовая кислота используется при нервных заболеваниях, гистидин – при язве желудка);

6) некоторые аминокислоты применяются в сельском хозяйстве для подкормки животных, что положительно влияет на их рост;

7) имеют техническое значение: аминокапроновая и аминоэнантовая кислоты образуют синтетические волокна – капрон и энант.

Билет№19

Задача. Вычислить объем углекислого газа, полученного при сгорании 8 грамм метана.

1. Окислительно – восстановительные реакции (на примере взаимодействия алюминия с оксидами некоторых металлов, концентрированной серной кислоты с медью).

Окислительно-восстановительные реакции (разобрать на примерах взаимодействия алюминия с оксидом железа (III), азотной кислоты с медью).

К окислительно-восстановительным реакциям могут быть отнесены химические реак-ции следующих типов.

Реакции замещения (вытеснения)

Примером реакций этого типа может служить реакция между оксидом железа (III) и алюминием. В этой реакции алюминий вытесняет железо из раствора, причем сам алюминий окисляется, а железо восстанавливается.

Приведем еще два примера:

В этой реакции хлор вытесняет бром из раствора (хлор окисляется, бром восстанавливается), содержащего ионы брома.

Реакции металла с кислотами

Эти реакции, в сущности, тоже представляют собой реакции замещения. В качестве примера приведем реакцию между медью и азотной кислотой. Медь вытесняет водород из кислоты. При этом происходит окисление меди, которая превращается в гидратированный катион, а содержащиеся в растворе кислоты гидратированные протоны азота восстанавливаются, образуя оксид азота.

Реакции металлов с водой

Эти реакции тоже принадлежат к типу реакций замещения. Они сопровождаются вытеснением из воды водорода в газообразном состоянии. В качестве примера приведем реакцию между металлическим натрием и водой:

Реакции металлов с неметаллами

Эти реакции могут быть отнесены к реакциям синтеза. В качестве примера приведем образование хлорида натрия в результате сгорания натрия в атмосфере хлора

2. Анилин – представитель аминов, химическое строение и свойства.

Основные свойства анилина: а) ароматический амин – анилин имеет большое практическое значение; б) анилин C6H5NH2 – это бесцветная жидкость, которая плохо растворяется в воде; в) имеет светло-коричневую окраску при частичном окислении на воздухе; г) анилин сильно ядовит. Основные свойства у анилина проявляются слабее, чем у аммиака и аминов предельного ряда. 1. Анилин не изменяет окраски лакмуса, но при взаимодействии с кислотами образует соли. 2. Если к анилину прилить концентрированную соляную кислоту, то происходит экзотермическая реакция и после охлаждения смеси можно наблюдать образование кристаллов соли: +Cl-– хлорид фениламмония. 3. Если на раствор хлорида фениламмония подействовать раствором щелочи, то снова выделится анилин: [С6Н5NН3]++ Сl-+ Nа++ ОН-? Н2О + С6Н5NН2 + Nа++ СI-. Здесь выражено влияние ароматического радикала фенила – С6Н5. 4. В анилине C6H5NH2 бензольное ядро смещает к себе неподеленную электронную пару азота аминогруппы. При этом электронная плотность на азоте уменьшается и он слабее связывает ион водорода, а это значит, что свойства вещества как основания проявляются в меньшей степени. 5. Аминогруппа влияет на бензольное ядро. 6. Бром в водном растворе не реагирует с бензолом. Способы применения анилина: 1) анилин– один из важнейших продуктов химической промышленности; 2) он является исходным веществом для получения многочисленных анилиновых красителей; 3) анилин используется при получении лекарственных веществ, например сульфаниламидных препаратов, взрывчатых веществ, высокомолекулярных соединений и т. д. Открытие профессором Казанского университета Н.Н. Зининым (1842 г.) доступного способа получения анилина имело большое значение для развития химии и химической промышленности. 1. Промышленность органического синтеза началась с производства красителей. 2. Широкое развитие этого производства стало возможным на основе использования реакции получения анилина, известной сейчас в химии под названием реакции Зинина. Особенности реакции Зинина: 1) эта реакция заключается в восстановлении нитробензола и выражается уравнением: С6Н5-NO2 + 6Н? С6Н5-NН2 + 2Н2О; 2) распространенным промышленным способом получения анилина является восстановление нитробензола металлами, например железом (чугунными стружками), в кислой среде; 3) восстановление нитросоединений соответствующего строения – это общий способ получения аминов.

В разделе на вопрос Анилин-представитель аминов,строение,функциональная группа!? заданный автором Волосок лучший ответ это Анили́н (фениламин) - органическое соединение с формулой С6H5NH2, простейший ароматический амин. Содержит аминогруппу -NH2. Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит.
Для анилина характерны реакции как по аминогруппе, так и по ароматическому кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов. С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком. С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол. Например, анилин энергично реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок) .
Осн. способ произ-ва анилина-каталитич. восстановление нитробензола водородом в газовой или жидкой фазе. Газофазный процесс осуществляют в трубчатом контактном аппарате при 250-350°С на никель- или медьсодержащем кат
С6Н5NO2 + 3H2 = C6H5NH2 + 2H2O + 443,8кДж/моль
Анилин отделяется от воды расслаиванием и очищается дистилляцией; реакц. вода обезвреживается биохимически. Для получения 1 т анилина расходуется 1,35 т нитробензола, 800 м3 Н2 и 1 кг катализатора.
В жидкой фазе анилин получают при повыш. давлении Н2 (до 1,1 МПа) и 160-170°С на никелевом или палладиевом кат. с одноврем. отгонкой воды и анилина благодаря теплоты р-ции.

Амины вошли в нашу жизнь совершенно неожиданно. Еще недавно это были ядовитые вещества, столкновение с которыми могло привести к смерти. И вот, спустя полтора столетия, мы активно пользуемся синтетическими волокнами, тканями, строительными материалами, красителями, в основе которых лежат амины. Нет, они не стали безопаснее, просто люди смогли их "приручить" и подчинить, извлекая для себя определенную пользу. О том, какую именно, и поговорим далее.

Определение

Для качественного и количественного определение анилина в растворах или соединениях используется реакция с в конце которой на дно пробирки выпадает белый осадок в виде 2,4,6-триброманилина.

Амины в природе

Амины встречаются в природе повсеместно в виде витаминов, гормонов, промежуточных продуктов обмена, есть они и в организме животных и в растениях. Кроме того, при гниении живых организмов также получаются средние амины, которые в жидком состоянии распространяют неприятный запах селедочного рассола. Широко описанный в литературе «трупный яд» появился именно благодаря специфическому амбре аминов.

Длительное время рассматриваемые нами вещества путали с аммиаком из-за похожего запаха. Но в середине девятнадцатого века французский химик Вюрц смог синтезировать метиламин и этиламин и доказать, что при сгорании они выделяют углеводород. Это было принципиальным отличием упомянутых соединений от аммиака.

Получение аминов в промышленных условиях

Так как атом азота в аминах находится в низшей степени окисления, то восстановление азотосодержащих соединений является наиболее простым и доступным способом их получения. Именно он широко распространен в промышленной практике из-за своей дешевизны.

Первый метод представляет собой восстановление нитросоединений. Реакция, во время которой образуется анилин, носит название ученого Зинина и была проведена в первый раз в середине девятнадцатого века. Второй способ заключается в восстановлении амидов при помощи алюмогидрида лития. Из нитрилов тоже можно восстановить первичные амины. Третий вариант - реакции алкилирования, то есть введение алкильных групп в молекулы аммиака.

Применение аминов

Сами по себе, в виде чистых веществ, амины используются мало. Один из редких примеров - полиэтиленполиамин (ПЭПА), который в бытовых условиях облегчает затвердение эпоксидной смолы. В основном первичный, третичный или вторичный амин - это промежуточный продукт в производстве различных органических веществ. Самым востребованным является анилин. Он - основа большой палитры анилиновых красителей. Цвет, который получится в конце, зависит непосредственно от выбранного сырья. Чистый анилин дает синий цвет, а смесь анилина, орто- и пара-толуидина будет красной.

Алифатические амины нужны для получения полиамидов, таких как нейлон и другие Они применяются в машиностроении, а также в производстве канатов, тканей и пленок. Кроме того, алифатические диизоцинаты используются в изготовлении полиуретанов. Из-за своих исключительных свойств (легкость, прочность, эластичность и способность прикрепляться к любым поверхностям) они востребованы в строительстве (монтажная пена, клей) и в обувной промышленности (противоскользящая подошва).

Медицина - еще одна сфера, где применяются амины. Химия помогает синтезировать из них антибиотики группы сульфаниламидов, которые успешно применяют в качестве препаратов второй линии, то есть резервной. На случай, если у бактерий разовьется устойчивость к основным лекарствам.

Вредное воздействие на организм человека

Известно, что амины - это весьма токсичные вещества. Вред здоровью может нанести любое взаимодействие с ними: вдыхание паров, контакт с открытой кожей или попадание соединений внутрь организма. Смерть наступает от нехватки кислорода, так как амины (в частности, анилин) связываются с гемоглобином крови и не дают ему захватывать молекулы кислорода. Тревожными симптомами являются одышка, посинение носогубного треугольника и кончиков пальцев, тахипноэ (учащенное дыхание), тахикардия, потеря сознания.

В случае попадания этих веществ на оголенные участки тела необходимо быстро убрать их ватой, предварительно смоченной в спирте. Делать это надо максимально аккуратно, чтобы не увеличить площадь загрязнения. Если появятся симптомы отравления - обязательно нужно обратиться к врачу.

Алифатические амины - это яд для нервной и сердечно-сосудистой систем. Они могут вызвать угнетение функций печени, ее дистрофию и даже онкологические заболевания мочевого пузыря.



© 2024 skypenguin.ru - Советы по уходу за домашними животными