Кора головного мозга. Локализация функций

Кора головного мозга. Локализация функций

Кафедра неврологии и нейрохирургии СибГМУ

Кора головного мозга

Кора больших полушарий головного мозга - эволюционно
наиболее молодое образование, достигшее у человека по
отношению к остальной массе головного мозга наибольших
величин
У человека масса коры больших полушарий составляет в
среднем 78% от общей массы головного мозга
Кора больших полушарий имеет исключительное значение в
регуляции жизнедеятельности организма, осуществлении
сложных норм поведения и в становлении нервнопсихических функций
Кора больших полушарий может нормально
функционировать лишь в тесном взаимодействии с
подкорковыми образованиями

Основание головного мозга

.

Цитоархитектоническая и миелоархитектоническая схема коры головного мозга

.

В учении о высшей нервной деятельности
выделяют два основных раздела
Первый - стоит ближе к нейрофизиологии и
рассматривает общие закономерности взаимодействия
нервных центров, динамику процессов возбуждения
и торможения
Н.П.
Бехтерева
Второй раздел рассматривает конкретные механизмы
отдельных мозговых функций, таких, как речь, память,
восприятие, произвольные движения, эмоции
Этот раздел близко примыкает к психологии и нередко
обозначается как психофизиология
Нейропсихология – клиническая дисциплина
разрабатывает методы точной диагностики корковых
поражений и принципы коррекционных
мероприятий
.
Один из основателей нейропсихологии – выдающийся
отечественный ученый А.Р. Лурия (1902-1977г.)
А.Р.
Лурия

Клетки коркового вещества в значительно меньшей
степени специализированы, чем ядра подкорковых
образований
Компенсаторные возможности коры весьма высоки -
функции пораженных клеток могут брать на себя другие
нейроны; поражение довольно значительных участков
коркового вещества может клинически проявляться очень
стерто (клинические немые зоны)
Отсутствие узкой специализации корковых нейронов
создает условия для возникновения самых разнообразных
межнейронных
связей,
формирования
сложных
«ансамблей»
нейронов,
регулирующих
различные
функции; в этом важнейшая основа способности к
обучению
Теоретически возможное число связей между десятками
миллиардов клеток коры головного мозга настолько
велико, что. в течение жизни человека значительная часть
их остается неиспользованной

Связь коры с «периферическими» образованиями – рецепторами и
эффекторами – обусловливает специализацию отдельных ее участков
Различные области коры связаны со строго определенными типами
рецепторов, образуя корковые отделы анализаторов
Анализатор – специализированная физиологическая система,
обеспечивающая
прием
и
переработку
определенного
типа
раздражений
Различают периферический отдел – собственно рецепторные
образования и совокупность промежуточных центров
Наиболее важные центры расположены в зрительном бугре,
являющемся коллектором всех видов чувствительности, и в коре
больших полушарий
По И. П. Павлову, мозговой центр, корковый отдел анализатора,
состоит из «ядра» и «рассеянных элементов»
«Ядро» - однородная в морфологическом отношении группа клеток с
точной проекцией рецепторных полей. «Рассеянные элементы»
находятся в окружности
или в определенном отдалении от «ядра»: ими
.
осуществляется более элементарный и менее дифференцированный
анализ и синтез поступающей информации

Строение анализатора Первичные, вторичные и третичные поля

Каждый анализатор представлен в симметричных
отделах правого и левого полушарий мозга
Двигательный и чувствительный анализаторы
связаны с противоположной половиной тела
Корковые представительства слухового, вкусового
и обонятельного анализаторов в каждом
полушарии имеют связи с обеими сторонами
В зрительную кору проецируется информация от
половины поля зрения каждого глаза, причем в
левое полушарие – от правых половин, в правое –
от левых половин
полей зрения
.

В
случае
выраженной
леворукости
доминантное правое полушарие
В
процессе
воспитания
родителей приучают детей
правой рукой
Амбидекстрия
обеими руками
.

большинство
пользоваться
одинаковое
владения

Функциональная асимметрия мозга

При доминировании правого полушария
преобладает синтез, образное
мышление.
Перескакивают с одного на другое,
часто оставляют дела незавершенными

Функциональная асимметрия мозга

При доминировании левого полушария
наблюдаются спокойствие,
доброжелательность, логика, анализ,
врожденная грамотность, хорошая
ориентировка на местности; хорошие
математики, программисты
Для праворуких рекомендовано
рисовать левой рукой и наоборот

Функциональная асимметрия мозга

Полушария мозга работают
попеременно -2 часа одно, 2 часа
другое
При рождении (знать час рождения)
активизируется правое полушарие
Постоянно идет смена активности
полушариев

Строение анализатора Первичные поля

Микроскопическая структуры корковых отделов анализаторов:
в каждом отделе существуют 2 типа клеточных зон
Нижние слои коры имеют связи с периферическими
рецепторами (IV слой) и с мускулатурой (V слой) и носят
название «первичных», или «проекционных» корковых зон
вследствие их непосредственной связи с периферическими
отделами анализатора
Такая структура обнаруживается в затылочной зоне, куда
проецируются
зрительные
пути,
в
височной,
где
заканчиваются слуховые пути, в задней центральной
извилине - корковом отделе чувствительного анализатора, в
передней центральной извилине - корковом двигательном
центре
В первичных, или проекционных, зонах наблюдается высокая
избирательность в приеме информации и специальная
.
представленность
отдельных рецепторных зон

Строение анализатора Вторичные поля

Над
«первичными»
зонами
надстраиваются
системы
«вторичных» зон (II и III слои), в которых преобладают
ассоциативные связи с другими отделами коры проекционно-ассоциативные
Для них характерны гораздо меньшая специализированность в
приеме информации и отсутствие прямой связи с периферией,
они способны образовывать внутри себя сложные комплексы,
в которых фиксируется прошлый опыт
Вторичные клеточные зоны обеспечивают более сложную
обработку информации и формируют при каждом
анализаторе специализированные блоки памяти
.

Строение анализатора Третичные поля

«Зоны
перекрытия»
корковых
представительств
отдельных
анализаторов
У человека они занимают весьма значительное место и
расположены в теменно-височно-затылочной области и в лобной
зоне
Третичные зоны обеспечивают выработку сложных, интегративных
реакций, среди которых у человека первое место занимают -
осмысленные действия
В третичных зонах
происходят операции планирования и контроля
формируются
центры
речи,
письма,
счета,
зрительнопространственной ориентировки
фиксируются навыки, приобретенные человеком в процессе его
социального обучения
.
проводится анализ средовых воздействий
организация ответных реакций и обучения

Гнозис и праксис

Гнозис (узнавание): анализ средовых воздействий на высшем уровне –
распознавание - сопоставление получаемой информации с накопленной
ранее
Операции гнозиса могут осуществляться как в пределах 1 анализатора, так
и при взаимодействии анализаторов
Праксис (действие): выработка программ действий и осуществление этих
программ, ибо ни одно действие невозможно без рецепторного контроля
Память необходима в операциях гнозиса и праксиса
Построение программы действий – это прежде всего подбор готовых
шаблонов, опять-таки хранящихся в памяти; блоки памяти существуют при
каждом анализаторе, а также на уровне межанализаторных систем
Особое место занимает смысловая память, являющаяся основой языка и
.
мышления

Первая и вторая сигнальные системы

Первая сигнальная система связана с деятельностью отдельных
анализаторов и осуществляет первичные этапы гнозиса и
праксиса, интеграцию сигналов, поступающих по каналам
отдельных анализаторов, и формирование ответных действий
с учетом состояния внешней и внутренней среды, а также
прошлого опыта
Вторая сигнальная система – объединяет системы различных
анализаторов, делая возможным осмысленное восприятие
окружающего, отношение к окружающему миру «со знанием и
пониманием»
Этот уровень интеграции связан с речевой деятельностью,
причем понимание речи (речевой гнозис) и использование речи
как средства обращения и мышления (речевой праксис) не только
взаимосвязаны,
но
и
обусловлены
различными
нейрофизиологическими механизмами
.

Типы личности (по И.П. Павлову)

Художественный (первосигнальный)
Мыслительный (второсигнальный)
Средний (промежуточный) типы
Любой ребенок в процессе развития совершает эволюцию от
холерического,
художественного
темперамента
к
уравновешенному, мыслительному
Существуют дети явно возбудимые и явно заторможенные,
энергичные и пассивные, самоуверенные и робкие, выносливые
и утомляемые

Основные центры коры больших полушарий Лобная доля

Двигательный анализатор располагается в передней центральной
извилине и парацентральной дольке
В средних слоях расположен анализатор кинестетических раздражений,
поступающих от скелетных мышц, сухожилий, суставов и костей
В V и отчасти VI слое - гигантские пирамидные клетки Беца, волокна
которых формируют пирамидный путь
Передняя центральная извилина имеет определенную соматотопическую
проекцию. В верхних отделах извилины проецируются мышцы нижних
конечностей, в нижних - лица. Туловище, гортань, глотка представлены в
обоих полушариях
Центр поворота глаз и головы в противоположную сторону
расположен в средней лобной извилине в премоторной области. Работа
центра тесно связана с системой заднего продольного пучка,
вестибулярными ядрами, образованиями стриопаллидарной системы, а
также с корковым отделом зрительного анализатора
В задних отделах верхней лобной извилины представлен центр, дающий
начало лобно-мостомозжечковому
пути
.
Эта область коры участвует в обеспечении координации движений,
связанных с прямохождением, сохранением равновесия стоя, сидя и
регулирует работу противоположного полушария мозжечка

Лобная доля

Моторный центр речи (центр речевого праксиса) находится в задней
части нижней лобной извилины - извилине Брока
Центр обеспечивает анализ кинестетической импульсации от мышц
речедвигательного аппарата, хранение и реализацию «образов»
речевых автоматизмов, формирование устной речи, тесно связан с
расположенной кзади от него проекционной зоной губ, языка и гортани
и с находящимся кпереди от него музыкальным моторным центром
Музыкальный
моторный
центр
обеспечивает
определенную
тональность, модуляцию речи, а также способность составлять
музыкальные фразы и петь
Центр письменной речи локализуется в заднем отделе средней лобной
извилины в непосредственной близости от проекционной корковой
зоны руки
Центр обеспечивает автоматизм письма и функционально связан с
центром Брока

Топическая диагностика корковых поражений

Поражение лобной доли:
Передняя центральная извилина: проявляется в виде моноплегий,
гемиплегий, недостаточности VII и XII нервов по центральному типу
Раздражение этой области вызывает фокальные судорожные припадки (так
называемая моторная джексоновская эпилепсия)
Поражение заднего отдела средней лобной извилины (корковый центр
взора) приводит к параличу или парезу взора - невозможности сочетанного
поворота глазных яблок в сторону, противоположную локализации очага. В
тяжелых случаях глазные яблоки фиксируются и крайнем отведении и
«смотрят на очаг»
Раздражение в области коркового центра взора вызывает адверсивные
судорожные припадки, начинающиеся с поворота головы и глазных яблок в
сторону, противоположную очагу
Поражение моторного центра речи (центра Брока) сопровождается
развитием моторной афазии, которая может сочетаться с аграфией
Патологические процессы в лобной доле характеризуются так же
появлением контралатеральной гемиатаксии (нарушение корковомозжечковой связи), симптомов орального автоматизма, хватательных
рефлексов

Поражение лобной доли

Изменения психики: страдает целенаправленность
психических процессов, утрачивается способность к
перспективному планированию действий, возникают
абулия (слабоволие), апатия, потеря инициативности.
Часто наблюдаются эйфория, снижение самокритики,
наклонность к грубым, плоским шуткам, над которыми
обычно больной смеется первым (лобный юмор),
неряшливость, утрата чувства дистанции в общении с
людьми
В отдельных случаях психические изменения
напоминают симптоматику шизофрении
(индифферентность, абулия, потеря личностной
активности), но чаще сопровождаются и другими
признаками поражения лобной доли

Наружная поверхность полушария головного мозга

Ядро двигательного анализатора
Ядро кожного анализатора
Центр Вернике
Центр амнестической
афазии
Центр Брока
.
Центр семантической
афазии

Теменная доля

Центр кожного анализатора - в задней центральной извилине
полей и коре верхней теменной области (проецируется тактильная,
болевая, температурная чувствительность противоположной
половины тела)
В верхних отделах проецируется чувствительность ноги, в нижних
отделах - чувствительность лица
Кзади от средних отделов задней центральной извилины
располагается
центр
стереогнозиса,
обеспечивающего
способность узнавания предметов на ощупь
Кзади от верхних отделов задней центральной извилины
располагается центр, обеспечивающий способность узнавания
собственного тела, его частей, их пропорций и взаимоположения
Центр праксиса локализуется в нижней теменной дольке слева,
надкраевой извилине
В нижних отделах передней и задней центральных извилин
располагается. центр анализатора интероцептивных импульсов
внутренних органов и сосудов, связан
с
подкорковыми
вегетативными образованиями

Поражение теменной доли

В области задней центральной извилины проявляется
в виде моноанестезии, гемианестезии, сенситивной
гемиатаксии
Раздражение этой области вызывает фокальные
сенсорные джексоновские припадки: приступы
онемения, покалывания, жжения, парестезии в
соответствующих участках тела
При поражении центров сенситивного гнозиса
возникают астереогноз, нарушения схемы тела
(аутотопагнозия, псевдополимелия), анозогнозия
(неузнавание собственного дефекта), алексия,
акалькулия (неспособность к счету)

Височная доля

Центр слухового анализатора располагается в средних отделах верхней
височной извилины, на поверхности, обращенной к островку (извилина
Гешля), обеспечивает проекцию улитки, а также хранение и
распознавание слуховых образов
Акустико-гностический центр располагается в задних отделах
височной доли. Обеспечивает восприятие собственной и чужой речи.
Центр вестибулярного анализатора располагается в нижних отделах
наружной поверхности височной доли, является проекционным,
находится в тесной связи с нижнебазальными отделами височных
долей,
дающими
начало
затылочно-височному
корково-мостомозжечковому пути
Центр обонятельного анализатора находится в древней части-коры
мозга - в крючке и аммоновом роге и обеспечивает проекционную
функцию, а также хранение и распознавание обонятельных образов
. анализатора располагается в ближайшем соседстве
Центр вкусового
центром обонятельного анализатора, т. е. в крючке и аммоновом роге,
самом нижнем отделе задней центральной извилины, а также
островке;
обеспечивает
проекционную
функцию,
хранение
распознавание вкусовых образов
с
в
в
и

Поражение височной доли:

В области коркового центра слухового анализатора приводит к появлению
слуховой агнозии. Поражение сенсорного центра речи Вернике наступает
сенсорная афазия
Нарушение памяти (амнезия)
При раздражении височных отделов коры могут возникать нарушения
памяти, сумеречные состояния, сложные психомоторные автоматизмы
Раздражение височных отделов может сопровождаться обонятельными,
вкусовыми, слуховыми галлюцинациями
Поражение недоминантной височной доли ведет к нарушению
распознавания выражения лица, интонации голоса, возникает
прозопагнозия
Нарушение деятельности височных долей ведет к частой смене
настроения непредсказуемости поведения и реакций, чрезмерная
фиксация на религиозных проблемах
Ощущение уже виденного (déjà vu) или никогда не виденного (jamais vu)
Безотчетные тревоги и страхи
Приступы судорог

Внутренняя поверхность полушария головного мозга

.
Центр обоняния
Центр зрения

Затылочная доля

Центр зрительного анализатора располагается в
затылочной доле
Поле 17 является проекционной зрительной
зоной, поля 18 и 19 обеспечивают хранение и
распознавание зрительных образов, зрительную
ориентацию в непривычной обстановке
На границе височной, затылочной и теменной
долей располагается центр анализатора
письменной речи, который тесно связан с
центром Вернике височной доли, с центром
зрительного анализатора затылочной доли, а
также с центрами теменной доли
Центр чтения
обеспечивает распознавание и
.
хранение образов письменной речи

Поражение затылочной доли

Гомонимная (одноименная) гемианопсия. Квадрантная гемианопсия:
при поражении клина – нижнеквадрантная, язычной –
верхнеквадрантная
Зрительная агнозия (поражение наружной поверхности затылочных
долей)
Возможно развитие алексии акалькулии (оптико-агностический
варианты), затылочной атаксии
Психосенсорные расстройства: метаморфопсии (восприятие предметов
с искаженной формой); макропсия, микропсия, порропсия (восприятие
предметов более удаленными, чем в действительности)
Утрата рефлекторных движений глазных яблок (на внезапную угрозу, во
время сна) при сохранности произвольных
При раздражении внутренней поверхности з.д. возникают фотомы –
простые зрительные ощущения. Раздражение наружной поверхности
сопутствуют более сложные зрительные ощущения и зрительные
галлюцинации (фантастически, цветные и кинематографические
картинки)

Гнозис и его расстройства

Наша ориентировка в окружающем мире связана с узнаванием формы,
величины, пространственной соотнесенности
предметов и с
пониманием их значения, которое заключено в названии предмета
Рецепторный аппарат и передача сенсорных импульсов при
поражениях высших гностических механизмов сохраняются, но
интерпретация этих импульсов нарушается
В результате возникает расстройство гнозиса - агнозия, суть которой в
том, что при сохранности восприятия предметов теряется ощущение их
«знакоместа» и окружающий мир, ранее такой знакомый в деталях
становится чуждым, непонятным, лишенным значения
Гнозис - это процесс непрерывного обновления, уточнения,
конкретизации образа, хранимого в матрице памяти, под влиянием
повторного сопоставления его с принимаемой информацией
.

Гнозис и его расстройства

Чаще нарушается гнозис в какой-либо одной анализаторной
системе
Зрительные агнозии возникают при поражении затылочных
отделов коры: больной видит предмет, но не узнает его
В одних случаях больной правильно описывает внешние
свойства предмета (цвет, форму, величину), однако узнать
предмет не может, но если дать больному предмет в руки, то он
при ощупывании узнает его
Иногда больной не узнает знакомые лица; некоторые больные с
подобным расстройством вынуждены запоминать людей по
каким-то другим признакам (одежда, родинка и т. д.)
Нередко при зрительных агнозиях страдает и узнавание букв,
цифр (алексия), возникает потеря способности к чтению
Для исследования зрительного гнозиса используют набор
предметов: предъявляя их обследуемому, просят определить,
описать их внешний вид, сравнить, какие предметы больше,
какие меньше;. применяют также набор картинок, цветных,
однотонных и контурных

Гнозис и его расстройства

Поражении височной доли: слуховые агнозии (извилина Гешле)
Больной не узнает знакомые ранее звуки: тиканье часов, звон
колокольчика, шум льющейся воды. Возможны нарушения узнавания
музыкальных мелодий - амузия
Поражении теменной области: сенситивные агнозии (обусловлены
нарушением узнавания тактильных, болевых, температурных,
проприоцептивных образов или их сочетаний)
Астереогноз. При некоторых вариантах астереогноза больной не
только не может определить предмет на ощупь, но и не в состоянии
определить форму предмета, особенность его поверхности
Анозогнозия - больной не осознает своего дефекта, например,
паралича
Расстройства схемы тела, пальцевая агнозия Герстмана
.

Праксис и его расстройства

Под праксисом понимают целенаправленное действие. Любой
двигательный акт не может быть точно выполнен без постоянного
афферентного контроля; неврологической основой такого контроля
является система глубокой чувствительности, информирующая
двигательные центры о степени напряжения сухожилий, мышц, о
положении конечностей в пространстве
Ведущую роль афферентного, кинестетического контроля в регуляции
движений убедительно раскрыли выдающиеся отечественные
физиологи Н.А. Бернштейн и П.К. Анохин
Благодаря кинестетической системе между исполнительным органом
и командным центром образуется звено т.н. обратной связи. По
каналу обратной связи постоянно поступает информация о ходе
выполнения
двигательных команд и тем самым создается
систематическая коррекция выполняемого движения
.

Праксис и его расстройства

Апраксия – при этом расстройстве нет ни параличей, ни нарушений
тонуса или координации и даже возможны простые произвольные
движения, но более сложные, чисто человеческие двигательные акты
нарушаются. Больной вдруг оказывается не в состоянии выполнять
такие простые действия, как рукопожатие, застегивание пуговиц,
причесывание, зажигание спички
Апраксия возникает при поражении теменно-височно-затылочной
области доминантного полушария (предварительный афферентный
анализ и синтез); при этом страдают обе половины тела
Апраксия может возникать также при поражении субдоминантного
правого полушария (у правшей) и мозолистого тела, связывающего
оба полушария; в этом случае апраксия определяется только слева
При апраксии страдает план действия, т. е. составление
непрерывной цепочки двигательных автоматизмов
Стойкость
двигательной
задачи,
выбор
автоматизмов
и
.
формирование «кинетической мелодии» регулируются лобными
долями

Виды апраксии

Моторная апраксия. Больной не может выполнять действий по заданию и
даже по подражанию
Просят разрезать бумагу ножницами, зашнуровать ботинок, разлиновать
бумагу при помощи карандаша и линейки (больной, хотя и понимает
задание, не может его выполнить, проявляя полную беспомощность)
Иногда невозможно выполнение таких простых действий, как приседание,
повороты, хлопанье в ладоши
Идеаторная апраксия. Больной не может выполнять действия по заданию
с реальными и воображаемыми предметами (например, показать, как
причесываются, размешивают сахар в стакане и т. д.), в то же время
действия по подражанию сохранены. Иногда больной может
автоматически
выполнять
определенные
действия.
Например,
целенаправленно не может застегнуть пуговицу
Конструктивная апраксия. Больной может выполнять различные
действия по подражанию и по устному приказу, но оказывается не в
состоянии создать качественно новый двигательный акт, сложить целое из
частей, (составить из спичек определенную фигуру, сложить пирамиду)
.
Для исследования
праксиса предлагают ряд заданий (присесть, погрозить
пальцем, причесаться и т. д.). Предъявляют также задания на действия с
воображаемыми предметами (просят показать, как едят, как звонят по
телефону, как пилят дрова и т. д.).

Речь и ее нарушения

Речь - важнейшая функция человека, поэтому в ее осуществлении принимают
участие корковые речевые зоны, расположенные в доминантном полушарии (центры
Брока и Вернике), двигательные, кинетические, слуховые и зрительные области, а
также проводящие афферентные и эфферентные пути, относящиеся к пирамидной и
экстрапирамидной системам, анализаторам чувствительности, слуха, зрения,
бульбарные отделы мозга (зрительный, глазодвигательный, лицевой, слуховой,
языкоглоточный, блуждающий и подъязычные нервы). Речевые механизмы имеют
сложную и многоступенчатую организацию
При нарушении иннервации речевого аппарата возникает дизартрия - нарушение
артикуляций, которая может быть обусловлена центральным или периферическим
параличом речедвигательного аппарата, поражением мозжечка, стриопаллидарной
системы.
Дислалия - фонетически неправильное произношение отдельных звуков, может
носить функциональный характер и при логопедических занятиях довольно успешно
устраняется
Под алалией понимают задержку речевого развития. Обычно к 1,5 годам ребенок
начинает говорить, но иногда это происходит значительно позже, хотя ребенок хорошо
понимает обращенную
к нему речь. Задержка речевого развития влияет и на
.
психическое развитие, поскольку речь - важнейшее средство информации для ребенка
Под мутизмом понимается немота, которая возникла у больного, владеющего речью. В детском
возрасте встречается реактивный мутизм как невротическое проявление

Речь и ее нарушения

Афазия:
экспрессивную (моторную) афазия Корковое нарушение моторной речи
является речевой апраксией.
импрессивную (сенсорную) афазия. Корковое нарушение сенсорной речи
- речевой агнозией.
.

Речь и ее нарушения
Сенсорная афазия (афазия Вернике), или словесная «глухота», возникает
при поражении левой височной области (средние и задние отделы верхней
височной извилины)
(логорея) с большим количеством парафазии (искажение, неточное
употребление слов) и с персеверациями, когда больной на различные по смыслу
вопросы отвечает одним и тем же словом. Тот же характер носит нарушение
понимания письменной речи (алексия). Больной не в состоянии читать.
.

Речь и ее нарушения

Встречаются особые формы моторной афазии, когда нарушена только устная речь (чистая
моторная афазия) при полной сохранности письменной речи или когда нарушены произвольная
речь и письмо, а повторение и списывание сохранены. Тотальная афазия возникает при
обширных повреждениях доминантного полушария головного мозга. Больной лишается
способности употреблять и понимать слова в связи с поражением как сенсорного, так и
моторного центра речи.
Амнестическая афазия. Развивается при поражении задне-височных и передне-теменных
отделов мозга. Забываются наименования предметов и явлений. Может встречаться у здоровых
людей. Подсказка помогает экфории (воспроизведению) целого слова.
.

Мужчины
Г.м. составляет 1/38 веса тела
Дендриты менее разветвленные
Женщины
Пространственная ориентация
связана с функцией лобной доли
правого полушария
Мозолистое тело более
асимметрично
У мужчин средний интеллект
встречается реже. Но зато больше
одаренных и умственно отсталых
Мальчики больше интересуются
вещами (Ильин Е.П.)
При решении любых задач
включаются не только лобные доли,
но и зоны, обрабатывающие
зрительную информацию
Г.м. составляет 1/35 веса тела
Дендриты в ряде областей г.м. более
разветвленные
За пространственную ориентацию
отвечают оба полушария г.м.
Мозолистое тело менее
асимметрично, чем у мужчин
Женщины в своей массе имеют
средний уровень интеллекта
Девочки больше интересуются
отношениями
Решение любых задач
осуществляется лобными долями
(отвечают не только за логику, но и
за интуицию)
Функция левой лобной доли может
дублироваться правой стороной
(облегчает восстановление речи
после инсульта)

Головной мозг мужчины и женщины

Мужчины
Вн/утробное развитие совершается
быстрее
Мальчики к 3 годам проявляют
больше страха, чем девочки
(разлученные с мамой)
Мальчики стараются уйти из-под
контроля взрослых
Мальчики во время пребывания в
д/саду постоянно перемещаются,
бросают предметы и игрушки.
Контакты спорадические, лишенные
всякой знаковости
В дошкольном периоде быстрее
переключаются с 1 вида
деятельности на другой
Для контактов характерна высокая
частота агрессии, реже – угроза,
появление страха + высокий
интерес к предметам
Женщины
Девочки к 3 годам более
общительны, примерно на год
раньше начинают шутить
Девочки чаще принимают не свою
стратегию
Девочки заняты прежде всего
наблюдениями, взгляд
перемещается с воспитательницы
на детей, а с них на предметы и на
воспитательницу
В дошкольный период медленнее и
труднее переключаются с одного
вида деятельности на другой
В начальной школе проявляют
более развитые психомоторные
навыки и самоконтроль, лучше
владеют ситуацией, сильнее
зависят от нее. Стремление к
коммуникации

Головной мозг мужчины и женщины

Мальчики -подростки способны
удерживать внимание на одном предмете
в среднем 5 минут
Быть смешным для мальчика не позорно,
а почетно. Именно этим они привлекают к
себе внимание
На 15-20% больше серого вещ-ва, чем у
женщин
Быстрее развивается (обычно к 6 годам)
правая сторона г.м. Это обеспечивает
лучшее пространственное и логическое
мышление, лучшее восприятие
Более развито абстрактное
«несловесное», отвлеченное мышление
Выявлена большая латерализованность
мозга мужчин
Головной мозг на 10-15% тяжелее
женского. Наибольшая масса отмечена в
20-30 лет
Девочки-подростки способны удерживать
внимание на одном предмете в среднем 20
минут
Если девочка выглядит смешной, то ей не до
смеха
Быстрее развивается левая сторона г.м.,
поэтому девочки раньше начинают говорить,
читать. В возрасте 5-10 лет опережают по
интеллектуальным способностям мальчиков.
Быстрее овладевают иностранными языками
Более развито предметное, конкретное,
основанное на речевых способностях
(вербальное) мышление
Полушария более симметричны, что
констатируется к 13 годам. Это упрощает
взаимодействие между ними
Абсолютный вес примерно на 10% меньше,
чем у мужчин. Наибольшая масса г.м.
отмечена до 20 лет

Головной мозг мужчины и женщины

Мужчины
Более развито абстрактное
мышление
Женщины
Более развито конкретное
мышление
В сутки произносят 2-4 тыс.
слов+1,5 тыс.
междометий+3.тыс жестов. В
сумме -6-8 тыс ед.
информационного обмена
Словарный запас почти в 2
раза меньше, чем у женщин
Обладают большими
способностями в словесном
выражении своих чувств
8 тыс. слов+ 2 тыс.
междометий+ 10 тыс жестов и
мимических сигналов. В сумме
-20 тыс.ед. инф. обмена
Владеет приблизительно 23
тыс слов

Вопрос относительно локализации функций в коре большого мозга воз­ник давно. Впервые поставил его венский врач нейроморфолог Ф.Й. Галль (1822). Он обратил внимание на то, что конфигурация черепа у разных лю­дей неодинаковая. По его мнению, это зависит от степени развития тех или иных участков коры, которые оказывают влияние на структуру черепа и приводят к появлению на нем выпуклостей и впадин. По этим изменениям черепа Галль старался определить умственные возможности, способности и склонности человека.

Учение Галля было, конечно, ошибочным. Оно предусматривало грубую локализацию сложных психических процессов в коре большого мозга. Ведь известно, что эти процессы протекают диффузно.

На смену концепции локализационного психоморфологизма Галля было принято положение, сформулированное французскими физиологами Ф. Мажанди и М.Ж.П. Флурансом (1825), что кора большого мозга функци­онирует как единое целое и что функциональной локализации внутри коры не существует. Так возникла теория эквипотенциальности, равнозначности разных участков коры. Она не только опровергла примитивные взгляды Галля, но и отрицала его правильную мысль о возможности локализации функций в коре, необходимость ее изучения.

До 1860 г. считали, что кора большого мозга - функционально однород­на и поливалентна и выполняет только функцию мышления. Вскоре были получены многочисленные доказательства как клиницистов, так и физиоло­гов относительно локализации различных функций в коре большого мозга.

Наиболее детально были изучены специализированные участки мозга, связанные с речевой функцией. В 1861 г. французский анатом П. Брока пока­зал, что поражение задней трети нижней лобной извилины левого полушария мозга предопределяет расстройства речи - моторную афазию. Позднее этот участок был назван центром (зоной) Брока. В 1874 г. немецкий исследователь К. Вернике описал второй тип афазии - сенсорную. Она связана с поражени­ем другого участка коры, который также находится в левом полушарии мозга в задней трети верхней височной извилины. Этот участок теперь называют центром (зоной) Вернике. Позднее было установлено, что центры Вернике и Брока соединяются группой нервных волокон - дугообразным пучком.

Большое значение имело открытие А. Фритчем и Э. Гитцигом в 1870 г. участков коры, раздражение которых в эксперименте на животных вызывало двигательный эффект, т. е. было подтверждено, что в коре большого мозга размещены двигательные центры. После этих работ большой интерес вы­звали сообщения Г. Мунка, В.М. Бехтерева о том, что в коре большого мозга имеются не только двигательные центры, но и участки, связанные со зрени­ем, слухом, обонянием, вкусом, общей чувствительностью кожи. Одновре­менно многочисленные работы клиницистов подтверждали факт существо­вания функциональной локализации в головном мозге человека. Г. Флексиг отметил ведущую роль передних частей лобных долей и нижней теменной извилины в течении психических процессов.

В 1874 г. проф. В.М. Бец открыл в двигательной коре обезьяны и чело­века особую группу гигантских пирамидных нейронов, которые образуют проводящие пути между моторной корой и спинным мозгом. Теперь эти ги­гантские клетки называют клетками Беца.

Так возникло учение об узкой локализации функций в коре большого моз­га, которое получило твердую фактическую основу, морфологическую базу.

Концепция локализационизма на определенном этапе развития науки была прогрессивной по сравнению со взглядами эквипотенциалистов. Она предусматривала возможность локализовать в коре большого мозга значи­тельное количество функциональных нарушений. Но надежды, связанные с этими важными открытиями в неврологии, оправдались далеко не полно­стью. Более того, в дальнейшем эта концепция начала тормозить развитие науки, что послужило причиной усиленной критики теории узкой локализа­ции функций. Дальнейшие наблюдения показали, что высшие психические функции локализованы в коре большого мозга, но их локализация не имеет четких границ. Они нарушались при поражении различных, значительно от­даленных один от другого участков коры.

Какой же точки зрения мы должны придерживаться в этом вопросе те­перь? Современная концепция о локализации функций в коре большого мозга несовместима как с теорией узкого локализационизма, так и с пред­ставлениями о равноценности (эквипотенциальности) разных образований мозга. В вопросе о локализации функций в коре большого мозга отечествен­ная неврология выходит из учения И.П. Павлова о динамической локализа­ции функций. На основании экспериментальных исследований И.П. Павлов показал, что кора большого мозга представлена совокупностью анализа­торов, где каждый из них имеет центральную зону - ядро анализатора и периферическую, где корковое представительство является рассеянным. Вследствие такой структуры анализатора корковые зоны его как бы пере­крывают одна другую и образуют тесно связанное морфофункциональное объединение. Динамическая локализация функций в коре предусматривает возможность использования одних и тех же структур мозга для обеспечения разных функций. Это означает, что в выполнении той или другой функции принимают участие разные отделы коры большого мозга. Например, такие высшие психические процессы, как речь, письмо, чтение, счет и т.п., никогда не осуществляются одним изолированным центром, а опираются на слож­ную систему совместно функционирующих зон головного мозга. Динамиче­ская локализация функций не исключает наличие центров в коре большого мозга, но их функция определяется связями с другими участками коры.

Необходимо отметить, что степень локализованности разных функций коры неодинаковая. Только элементарные корковые функции, которые обе­спечиваются отдельными анализаторами, первичными рецепторными ап­паратами, можно связать с соответствующими участками коры. Сложные, филогенетически молодые функции не могут быть узко локализованными; в их осуществлении участвуют большие участки коры большого мозга или даже кора в целом.

Дальнейшее развитие учения о динамической локализации функций в коре получило в работах П.К. Анохина (1955), который сформулировал концепцию функциональных систем высших мозговых функций. В соот­ветствии с современными представлениями функциональная система име­ет сложное иерархическое строение. Она включает в разных соединениях корковые, подкорковые центры, проводящие пути, исполнительные органы. Причем одни и те же нервные образования могут быть составными разных функциональных систем. Непосредственно та или другая высшая мозговая функция реализуется благодаря сложному, упорядоченному, динамическо­му взаимодействию разных систем мозга.

Значительный вклад в понимание функциональной организации коры большого мозга внесли исследования канадского нейрохирурга У. Пенфильда (1964), проведенные во время оперативного вмешательства на мозге человека. Основным принципом функциональной организации проекци­онных систем в коре является принцип топической локализации, которая основывается на четких анатомических связях между отдельными воспри­нимающими элементами периферии и корковыми клетками проекционных зон. В каждой из этих систем анализаторов в зависимости от отношения разных участков коры к другим образованиям мозга различают три типа корковых нолей (Г.И. Поляков, 1973).

Первичные проекционные поля отвечают тем архитектоническим участкам, в которых локализуются корковые отделы анализаторов: анализатора общей чувствительности - в постцентральной извилине, обонятельного и слухово­го в височной доле, зрительного в затылочной. С этими полями связаны простые, элементарные функции: общая чувствительность кожи, слух, обоня­ние, зрение. Это поля, которые не могут обеспечить интегративную функцию восприятия, они лишь реагируют на определенные раздражения одной модаль­ности и не отвечают на раздражение другой. В первичных проекционных полях самыми развитыми являются нейроны IV афферентного слоя. Для первичных проекционных полей характерен соматотопический принцип строения, т. е. представительство чувствительных функций в определенных зонах коры.

Вторичные проекционные поля расположены вокруг первичных. Они непосредственно не связаны со специфическими проводящими путями. Во вторичных корковых полях преобладают нейроны второго и третьего слоев коры; здесь имеется большое количество мультисенсорных нейронов, ко­торые обеспечивают, по сравнению с первичными полями, другой характер реагирования. Электрическое раздражение вторичных проекционных по­лей вызывает у человека сложные зрительные образы, мелодии, в отличие от элементарных ощущений (вспышка, звук), которые возникают в случае раздражения первичных полей. Во вторичных проекционных полях про­исходит высший анализ и синтез, более подробная обработка информации, осознание ее.

Вторичные проекционные поля вместе с первичными составляют цен­тральную часть анализатора, или его ядро. Взаимодействие нейронов этих зон носит сложный, неоднозначный характер, и в условиях нормальной дея­тельности мозга оно основывается на последовательном изменении возбу­дительных и тормозных процессов в соответствии с характером конечного результата. Это и обеспечивает динамические свойства локализации.

Описанная функциональная организация коры в виде четко разделен­ных по принципу модальной специфичности полей в наибольшей мере вы­ражена у человека и высших представителей животного мира. В частности, у человека вторичные проекционные поля составляют около 50 % всей коры большого мозга (у обезьян - около 20 %).

Третичные проекционные поля - это ассоциативные зоны, которые раз­мещены в местах перекрывания отдельных анализаторов. Различают две основных ассоциативных зоны: в лобной доле перед прецентральной изви­линой и на границе между вторичными проекционными полями теменной, затылочной и височной долей.

Третичные проекционные поля, или зоны перекрытия, не связаны непо­средственно с периферическими рецепторными аппаратами, но они тесно связаны с другими участками коры, в том числе и с проекционными полями. Сюда поступают также сигналы от ассоциативных ядер таламуса.

В коре большого мозга, в особенности в участке ассоциативных зон, нейроны размещены по типу функциональных колонок. Колончастая орга­низация зон коры характеризуется вертикальным расположением нейрон­ных элементов (колонки) с подобными функциональными свойствами. Это означает, что все шесть слоев клеток коры ассоциативных зон, которые ле­жат перпендикулярно к ее поверхности, принимают участие в переработке сенсорной информации, которая поступает от периферических рецепторов. Большая часть нейронов третичных зон имеет мультимодальные свойства. Они обеспечивают интеграцию сигналов, которые поступают от различных анализаторов. Здесь завершается формирование соответствующих чувств, осуществляются сложные аналитико-синтетические функции.

Третичные проекционные поля имеют непосредственное отношение к высшим психическим функциям. С функцией этих зон связаны процессы обучения и памяти. Они присущи только мозгу человека.

Сенсорные зоны коры большого мозга тесно связаны с моторными зона­ми, которые расположены перед центральной бороздой. Вместе они образу­ют единое сенсомоторное поле. В моторной коре также различают первич­ную, вторичную и третичную зоны.

Первичная моторная зона коры (поле 4) расположена непосредственно перед роландовой бороздой. Это прецентральная извилина, с 5-го слоя кото­рой берет начало пирамидный путь, который соединяет кору большого моз­га с клетками передних рогов спинного мозга. Как и соматосенсорная зона, она имеет четкую соматотопическую организацию. Почти 50 % поверхности этой зоны у человека имеют представительство верхние конечности и мыш­цы лица, губ, языка, учитывая важность функции, которую они выполняют (тонкие движения, речь).

Вторичная моторная зона коры - премоторная (поле 6), размещена впе­реди первичной зоны коры и в глубине сильвиевой борозды. Эта зона коры вместе с первичной моторной зоной, подкорковыми ядрами и таламусом ру­ководит многими более сложными движениями.

Третичная моторная зона коры охватывает передние отделы лобных долей (префронтальная область). Нейроны этой корковой зоны получают многочисленные импульсы, которые поступают от сенсомоторной коры, зрительной, слуховой зон коры, таламуса, а также от подкорковых ядер и других структур. Эта зона обеспечивает интеграцию всех информационных процессов, формирование планов и программы действий, контролирует са­мые сложные формы поведения человека.

Первичные сенсорные и моторные зоны коры связаны преимуществен­но с противоположной половиной тела. Вследствие такой организации контралатеральных связей сенсорные и моторные функции обоих полушарий большого мозга и у человека, и у животных симметричные.

Что касается вторичных и третичных зон коры, то они разные в правом и левом полушариях мозга. Это означает, что распределение более спе­циализированных функций совсем другое асимметричное. Считают, что с осложнением мозговой функции возрастает тенденция к определенной латерализации в ее распределении. Развитие латерализации полушарных центров является отличительной особенностью мозга человека.

В осуществлении функций коры большого мозга значительная роль при­надлежит процессам возбуждения и торможения в центральной нервной системе. Возбуждение связано с возникновением в нейроне временной де­поляризации. Возбудительными медиаторами могут быть разные вещества: норадреналин, дофамин, серотонин. Важное значение имеют производные глутаминовой кислоты (глутаматы), субстанция Р. Торможение в коре большого мозга осуществляется тормозными интернейронами. Основным медиатором коркового торможения является ГАМ К. Перенапряжение про­цессов возбуждения и торможения приводит к появлению застойных очагов, срыву корковой деятельности и возникновению патологических состояний.

Существенное значение имеют также процессы выборочного торможе­ния, которое играет решающую роль в обеспечении направленности потоков нервных импульсов. На уровне коры большого мозга оно регулирует соот­ношение между симметричными центрами обоих полушарий. Кроме того, коллатерали аксонов пирамидных клеток через вставные тормозные клет­ки Рэншоу оказывают тормозное влияние на сопредельные нейроны. Это ограничивает уровень возбуждения коры большого мозга, предотвращает в норме возникновение эпилептической активности в мозге. Поскольку один нейрон центральной нервной системы имеет связь с многими десятками и сотнями нервных волокон от разных участков, возникает чрезвычайно слож­ное сочетание тормозных и возбудительных импульсов, которые существен­ным образом влияют на функциональное состояние нейронов мозга. Благо­даря конвергентно-дивергентной организации нервной системы подобные специфические колебания и соответствующее распределение возбуждения и торможения возникают одновременно в корковых и подкорковых ней­ронах мозга. Это создает основу для интегративной деятельности мозга, с которой связаны высшие психические функции: восприятие, познавание, память, состояние сознания.

Межполушарное взаимоотношение

Характерной особенностью чело­веческого мозга является распределение функций между двумя полуша­риями. В том, что человеческий мозг не полностью симметричный по своим функциям, можно убедиться, основываясь на фактах ежедневной жизни. Специализация полушарий связана с преобладающим использованием одной руки. Это явление определено генетически. Большинство людей от­дают предпочтение правой руке, управляемой левой половиной мозга. В че­ловеческой популяции левши составляют не более 9 %. Возможно, что такой значительный сдвиг в сторону доминирования правой руки является отобра­жением уникальной специализации человеческого мозга. Лингвистические способности также связаны с левым полушарием мозга. Недавно считали, что левое полушарие мозга является доминантным, развитие его начинается с эволюции речи, а правое играет подчиненную, субдоминантную роль. Тем не менее, в последнее время эта концепция была пересмотрена, поскольку стало очевидно, что каждое полушарие имеет определенные особенности, но разные функции. Концепция доминирующего и недоминирующего по­лушария была заменена концепцией комплементарной (соответствующей) специализации полушарий.

Левое полушарие большого мозга играет исключительную роль в линг­вистической, речевой деятельности, специализируется на последовательно аналитических процессах (категорическое полушарие). Оно является ба­зой логического, абстрактного мышления и функционирует под непосред­ственным влиянием второй сигнальной системы. Правое полушарие мозга функционально связано с восприятием и переработкой экстероцептивных, проприоцептивных, интероцептивных импульсов, которые обеспечивают восприятие конкретных образов, предметов, людей, животных, т. е. осу­ществляют гностическую функцию, в том числе и гнозис собственного тела (репрезентативное полушарие). Доказано его значение в осуществлении восприятия пространства, времени, музыки. Правое полушарие служит основой образного, конкретного мышления. Поэтому не следует считать правое полушарие большого мозга подчиненным левому. Итогом исследо­ваний последних лет стала замена теории доминантности полушарий по­нятием комплементарной (соответствующей) специализации полушарий. Поэтому в настоящее время можно утверждать, что характерной для мозга человека является лишь одна уникальная особенность - функциональная асимметрия, специализация полушарий головного мозга, которая начинает­ся до эволюции речи.

На протяжении многих лет среди неврологов доминировала мысль о том, что специализация полушарий большого мозга не коррелирует с анато­мической асимметрией. Тем не менее, на протяжении последних десятиле­тий этот вопрос пересмотрен. Теперь асимметрию мозга человека выявляют с помощью компьютерной аксиальной томографии. Имеются сообщения о разном распределении медиаторов, ферментов, т. е. биохимической асимме­трии полушарий большого мозга. Физиологическое значение этих отличий пока неизвестно.

Кора больших полушарий головного мозга - эволюционно наиболее молодое образование, достигшее у человека по отношению к остальной массе головного мозга наибольших величин. У человека масса коры больших полушарий составляет в среднем 78% от общей массы головного мозга. Кора больших полушарий имеет исключительно важное значение в регуляции жизнедеятельности организма, осуществлении сложных форм поведения и в становлении нервно-психических функций. Эти функции обеспечиваются не только всей массой коркового вещества, но и неограниченными возможностями ассоциативных связей между клетками коры и подкорковых образований, что создает условия для сложнейшего анализа и синтеза поступающей информации, для развития форм обучения, недоступных животным.

Говоря о ведущей роли коры больших полушарий в нейрофизиологических процессах, не следует забывать, что этот высший отдел может нормально функционировать лишь в тесном взаимодействии с подкорковыми образованиями. Противопоставление коры и нижележащих отделов мозга в значительной степени схематично и условно. В последние годы развиваются представления о вертикальной организации функций нервной системы, о кольцевых корково-подкорковых связях.

Клетки коркового вещества в значительно меньшей степени специализированы, чем ядра подкорковых образований. Отсюда следует, что компенсаторные возможности коры весьма высоки - функции пораженных клеток могут брать на себя другие нейроны; поражение довольно значительных участков коркового вещества может клинически проявляться очень стерто (так называемые клинические немые зоны). Отсутствие узкой специализации корковых нейронов создает условия для возникновения самых разнообразных межнейронных связей, формирования сложных «ансамблей» нейронов, регулирующих различные функции. В этом важнейшая основа способности к обучению. Теоретически возможное число связей между 14 млрд. клеток коры головного мозга настолько велико, что в течение жизни человека значительная часть их остается неиспользованной. Этим еще раз подтверждается неограниченность возможностей обучения человека.

Несмотря на известную неспецифичность корковых клеток, определенные группы их анатомически и функционально более тесно связаны с теми или иными специализированными отделами нервной системы. Морфологическая и функциональная неоднозначность различных участков коры позволяет говорить о корковых центрах зрения, слуха, осязания и т. д., которые имеют определенную локализацию. В работах исследователей XIX века этот принцип локализации был доведен до крайности: делались попытки выявления центров воли, мышления, способности понимать искусство и т. д. В настоящее время было бы неверно говорить о корковом центре как о строго ограниченной группе клеток. Необходимо отметить, что специализация нервных звеньев формируется в процессе жизнедеятельности.

По И. П. Павлову, мозговой центр, или корковый отдел анализатора, состоит из «ядра» и «рассеянных элементов». «Ядро» представляет собой относительно однородную в морфологическом отношении группу клеток с точной проекцией рецепторных полей. «Рассеянные элементы» находятся в окружности или в определенном отдалении от «ядра»: ими осуществляется более элементарный и менее дифференцированный анализ и синтез поступающей информации.

Из 6 слоев клеток коры верхние слои развиты у человека наиболее мощно по сравнению с аналогичными слоями у животных и формируются в онтогенезе значительно позже нижних слоев. Нижние слои коры имеют связи с периферическими рецепторами (IV слой) и с мускулатурой (V слой) и носят название «первичных», или «проекционных», корковых зон вследствие их непосредственной связи с периферическими отделами анализатора. Над «первичными» зонами надстраиваются системы «вторичных» зон (II и III слои), в которых преобладают ассоциативные связи с другими отделами коры, поэтому они называются также проекционно-ассоциативными.

В корковых представительствах анализаторов, таким образом, выявляются две группы клеточных зон. Такая структура обнаруживается в затылочной зоне, куда проецируются зрительные пути, в височной, где заканчиваются слуховые пути, в задней центральной извилине - корковом отделе чувствительного анализатора, в передней центральной извилине - корковом двигательном центре. Анатомическая неоднородность «первичных» и «вторичных» зон сопровождается и физиологическими различиями. Эксперименты с раздражением коры показали, что возбуждение первичных зон сенсорных отделов приводит к возникновению элементарных ощущений. Например, раздражение затылочных отделов вызывает ощущение мелькания световых точек, черточек и т. д. При раздражении вторичных зон возникают более сложные явления: обследуемый видит разнообразно оформленные предметы - людей, птиц и т. д. Можно предполагать, что именно во вторичных зонах осуществляются операции гнозиса и отчасти праксиса.

Кроме того, в корковом веществе выделяют третичные зоны, или зоны перекрытия корковых представительств отдельных анализаторов. У человека они занимают весьма значительное место и расположены прежде всего в теменно-височно-затылочной области и в лобной зоне. Третичные зоны вступают в обширные связи с корковыми анализаторами и обеспечивают тем самым выработку сложных, интегративных реакций, среди которых у человека первое место занимают осмысленные действия. В третичных зонах, следовательно, происходят операции планирования и контроля, требующие комплексного участия разных отделов мозга.

В раннем детском возрасте функциональные зоны коры перекрывают друг друга, границы их диффузны, и лишь в процессе практической деятельности происходит постоянная концентрация функциональных зон в очерченные, отделенные друг от друга центры. В клинике у взрослых больных наблюдаются весьма постоянные симптомокомплексы при поражении определенных участков коркового вещества и связанных с ними нервных путей

В детском возрасте в связи с незавершенной дифференциацией функциональных зон очаговое поражение коры больших полушарий может не иметь четкого клинического проявления, что следует помнить при оценке тяжести и границ поражения мозга у детей.

В функциональном отношении можно выделить основные интегративные уровни корковой деятельности.

Первая сигнальная система связана с деятельностью отдельных анализаторов и осуществляет первичные этапы гнозиса и праксиса, т. е. интеграцию сигналов, поступающих по каналам отдельных анализаторов, и формирование ответных действий с учетом состояния внешней и внутренней среды, а также прошлого опыта. К этому первому уровню можно отнести зрительное восприятие предметов с концентрацией внимания на определенных его деталях, произвольные движения с активным усилением или торможением их.

Более сложный функциональный уровень корковой деятельности объединяет системы различных анализаторов, включает в себя вторую сигнальную систем)", объединяет системы различных анализаторов, делая возможным осмысленное восприятие окружающего, отношение к окружающему миру «со знанием и пониманием». Этот уровень интеграции теснейшим образом связан с речевой деятельностью, причем понимание речи (речевой гнозис) и использование речи как средства обращения и мышления (речевой праксис) не только взаимосвязаны, но и обусловлены различными нейрофизиологическими механизмами, что имеет большое клиническое значение.

Высший уровень интеграции формируется у человека в процессе его созревания как социального существа, в процессе овладения теми навыками и знаниями, которыми располагает общество.

Третий этап корковой деятельности играет роль своеобразного диспетчера сложных процессов высшей нервной деятельности. Он обеспечивает целенаправленность тех или иных актов, создавая условия для наилучшего их выполнения. Это достигается путем «фильтрации» сигналов, имеющих в данный момент наибольшее значение, от сигналов второстепенных, осуществления вероятностною прогнозирования будущего и формирования перспективных задач.

Разумеется, сложная корковая деятельность не могла бы осуществляться без участия системы хранения информации. Поэтому механизмы памяти - один из важнейших компонентов этой деятельности. В этих механизмах существенное значение имеют не только функции фиксирования информации (запоминание), но и функции получения необходимых сведений из «хранилищ» памяти (воспоминание), а также функции переброски потоков информации из блоков оперативной памяти (то, что необходимо на данный момент) в блоки долговременной памяти и наоборот. В противном случае было бы невозможно усвоение нового, так как старые навыки и знания мешали бы этому.

Нейрофизиологические исследования последнего времени позволили установить, какие функции преимущественно свойственны определенным отделам коры больших полушарий. Еще в прошлом веке было известно, что затылочная область коры тесно связана со зрительным анализатором, височная область - со слуховым (извилины Гешля), вкусовым анализатором, передняя центральная извилина - с двигательным, задняя центральная извилина - с кожно-мышечным анализатором. Можно условно считать, что эти отделы связаны с первым типом, корковой деятельности и обеспечивают наиболее простые формы гнозиса и праксиса.

В формировании более сложных гностико-праксических функций активное участие принимают отделы коры, лежащие в теменно-височно-затылочной области. Поражение этих участков приводит к более сложным формам расстройств. В височной доле левого полушария находится гностический центр речи Вернике. Моторный же центр речи находится несколько кпереди от нижней трети передней центральной извилины (центр Брока). Помимо центров устной речи, различают сенсорный и моторный центры письменной речи и ряд других образований, так или иначе связанных с речью. Теменно-височно-затылочная область, где замыкаются пути, идущие от различных анализаторов, имеет важнейшее значение для формирования высших психических функций. Известный нейрофизиолог и нейрохирург У. Пенфилд назвал эту область интерпретационной корой. В этой области расположены также образования, принимающие участие в механизмах памяти.

Особое значение придается лобной области. По современным представлениям, именно этот отдел коры головного мозга принимает активное участие в организации целенаправленной деятельности, в перспективном планировании и целеустремленности, т. е. относится к третьему типу корковых функций.

Основные центры коры больших полушарий. Лобная доля. Двигательный анализатор располагается в передней центральной извилине и парацентральной дольке (поля 4, 6 и 6а по Бродману). В средних слоях расположен анализатор кинестетических раздражений, поступающих от скелетных мышц, сухожилий, суставов и костей. В V и отчасти VI слое располагаются гигантские пирамидные клетки Беца, волокна которых формируют пирамидный путь. Передняя центральная извилина имеет определенную соматотопическую проекцию и связана с противоположной половиной тела. В верхних отделах извилины проецируются мышцы нижних конечностей, в нижних - лица. Туловище, гортань, глотка представлены в обоих полушариях (рис. 55).

Центр поворота глаз и головы в противоположную сторону расположен в средней лобной извилине в премоторной области (поля 8, 9). Работа этого центра тесно связана с системой заднего продольного пучка, вестибулярными ядрами, образованиями стриопаллидарной системы, участвующей в регуляции торсии, а также с корковым отделом зрительного анализатора (поле 17).

В задних отделах верхней лобной извилины представлен центр, дающий начало лобно-мостомозжечковому пути (поле 8). Эта область коры больших полушарий участвует в обеспечении координации движений, связанных с прямохождением, сохранением равновесия стоя, сидя и регулирует работу противоположного полушария мозжечка.

Моторный центр речи (центр речевого праксиса) находится в задней части нижней лобной извилины - извилине Брока (поле 44). Центр обеспечивает анализ кинестетической импульсации от мышц речедвигательного аппарата, хранение и реализацию «образов» речевых автоматизмов, формирование устной речи, тесно связан с расположением кзади от него нижним отделом передней центральной извилины (проекционной зоной губ, языка и гортани) и с находящимся кпереди от него музыкальным моторным центром.

Музыкальный моторный центр (поле 45) обеспечивает определенную тональность, модуляцию речи, а также способность составлять музыкальные фразы и петь.

Центр письменной речи локализуется в заднем отделе средней лобной извилины в непосредственной близости от проекционной корковой зоны руки (поле 6). Центр обеспечивает автоматизм письма и функционально связан с центром Брока.

Теменная доля. Центр кожного анализатора располагается в задней центральной извилине полей 1, 2, 3 и коре верхней теменной области (поля 5 и 7). В задней центральной извилине проецируется тактильная, болевая, температурная чувствительность противоположной половины тела. В верхних отделах проецируется чувствительность ноги, в нижних отделах - чувствительность лица. В полях 5 и 7 представлены элементы глубокой чувствительности. Кзади от средних отделов задней центральной извилины располагается центр стереогнозиса (поля 7,40 и отчасти 39), обеспечивающего способность узнавания предметов на ощупь.

Кзади от верхних отделов задней центральной извилины располагается центр, обеспечивающий способность узнавания собственного тела, его частей, их пропорций и взаимоположения (поле 7).

Центр праксиса локализуется в нижней теменной дольке слева, надкраевой извилине (поля 40 и 39). Центр обеспечивает хранение и реализацию образов двигательных автоматизмов (функции праксиса).

В нижних отделах передней и задней центральных извилин располагается центр анализатора интероцептивных импульсов внутренних органов и сосудов. Центр имеет тесные связи с подкорковыми вегетативными образованиями.

Височная доля. Центр слухового анализатора располагается в средней части верхней височной извилины, на поверхности, обращенной к островку (извилина Гешля, поля 41, 42, 52). Указанные образования обеспечивают проекцию улитки, а также хранение и распознавание слуховых образов.

Центр вестибулярного анализатора (поля 20 и 21) располагается в нижних отделах наружной поверхности височной доли, является проек ционным, находится в тесной связи с нижнебазальными отделами височных долей, дающими начало затылочно-височному корково-мостомозжечковому пути.

Рис. 55. Схема локализации функций в коре больших полушарий (А - Г). I - проекционная двигательная зона; II - центр поворота глаз и головы в противоположную сторону; III - проекционная зона чувствительности; IV - проекционная зрительная зона; проекционные гностические зоны: V - слуха; VI - обоняния, VII - вкуса, VIII - гностическая зона схемы тела; IX - зона стереогноза; X - гностическая зрительная зона; XI - гностическая зона чтения; XII - гностическая речевая зона; XIII - зона праксиса; XIV - праксическая речевая зона; XV - праксическая зона письма; XVI - зона контроля за функцией мозжечка.

Центр обонятельного анализатора находится в филогенетически наиболее древней части коры мозга - в крючке и аммоновом роге (поле 11а, е) и обеспечивает проекционную функцию, а также хранение и распознавание обонятельных образов.

Центр вкусового анализатора располагается в ближайшем соседстве с центром обонятельного анализатора, т. е. в крючке и аммоновом роге, но, кроме того, в самом нижнем отделе задней центральной извилины (поле 43), а также в островке. Как и обонятельный анализатор, центр обеспечивает проекционную функцию, хранение и распознавание вкусовых образов.

Акустико-гностический сенсорный центр речи (центр Вернике) локализуется в задних отделах верхней височной извилины слева, в глубине латеральной борозды (поле 42, а также поля 22 и 37). Центр обеспечивает распознавание и хранение звуковых образов устной речи как собственной, так и чужой.

В непосредственной близости от центра Вернике (средняя треть верхней височной извилины - поле 22) располагается центр, обеспечивающий распознавание музыкальных звуков, мелодий.

Затылочная доля. Центр зрительного анализатора располагается в затылочной доле (поля 17, 18, 19). Поле 17 является проекционной зрительной зоной, поля 18 и 19 обеспечивают хранение и распознавание зрительных образов, зрительную ориентацию в непривычной обстановке.

На границе височной, затылочной и теменной долей располагается центр анализатора письменной речи (поле 39), который тесно связан с центром Вернике височной доли, с центром зрительного анализатора затылочной доли, а также с центрами теменной доли. Центр чтения обеспечивает распознавание и хранение образов письменной речи.

Данные о локализации функций получены либо в результате раздражения различных отделов коры в эксперименте, либо в результате анализа нарушений, возникающих вследствие поражения тех или иных участков коры. Оба эти подхода могут лишь указывать на участие определенных корковых зон в тех или иных механизмах, но вовсе не означают их строгой специализации, однозначной связи со строго определенными функциями.

В неврологической клинике, помимо признаков поражения участков коры больших полушарий, встречаются симптомы раздражения отдельных ее областей. Кроме того, в детском возрасте наблюдаются явления задержанного или нарушенного развития корковых функций, что в значительной степени видоизменяет «классическую» симптоматику. Существование разных функциональных типов корковой деятельности обусловливает различную симптоматику корковых поражений. Анализ этой симптоматики позволяет выявить характер поражения и его локализацию.

В зависимости от типов корковой деятельности можно среди корковых поражении различить нарушения гнозиса и праксиса на разных уровнях интеграции; речевые нарушения ввиду их практической важности; расстройства регуляции целенаправленности, целеустремленности нейрофизиологических функций. При каждом виде расстройств могут нарушаться и механизмы памяти, участвующей в данной функциональной системе. Кроме того, возможны более тотальные нарушения памяти. Помимо относительно локальных корковых симптомов, в клинике наблюдаются и более диффузные, проявляющиеся прежде всего в интеллектуальной недостаточности и в нарушениях поведения. Оба эти расстройства имеют особое значение в детской психиатрии, хотя по существу многие варианты таких нарушений можно считать пограничными между неврологией, психиатрией и педиатрией.

Исследование корковых функций в детском возрасте имеет ряд отличий от исследования других отделов нервной системы. Важно установить контакт с ребенком, поддерживать непринужденный тон беседы с ним. Поскольку многие диагностические задания, предъявляемые ребенку, весьма сложны, нужно стремиться, чтобы он не только понял задание, но и заинтересовался им. Иногда при обследовании чрезмерно отвлекаемых, моторно расторможенных или умственно отсталых детей приходится прилагать много терпения и изобретательности, чтобы выявить имеющиеся отклонения. Во многих случаях анализу корковых функций ребенка помогают сообщения родителей о его поведении дома, в школе, школьная характеристика.

При исследовании корковых функций важное значение имеет психологический эксперимент, суть которого заключается в предъявлении стандартизированных целенаправленных заданий. Отдельные психологические методики позволяют оценивать определенные стороны психической деятельности изолированно, другие - более комплексно. В их число входят и так называемые личностные тесты.

Гнозис и его расстройства . Гнозис в буквальном смысле слова означает узнавание. Наша ориентировка в окружающем мире связана с узнаванием формы, величины, пространственной соотнесенности предметов и, наконец, с пониманием их значения, которое заключено в названии предмета. Этот запас сведений об окружающем мире складывается из анализа и синтеза потоков сенсорных импульсов и откладывается в системах памяти. Рецепторный аппарат и передача сенсорных импульсов при поражениях высших гностических механизмов сохраняются, но интерпретация этих импульсов, сличение получаемых данных с образами, хранящимися в памяти, нарушаются. В результате возникает расстройство гнозиса - агнозия, суть которой в том, что при сохранности восприятия предметов теряется ощущение их «знакомости» и окружающий мир, ранее такой знакомый в деталях, становится чуждым, непонятным, лишенным значения.

Но гнозис нельзя себе представить как простое сопоставление, распознавание образа. Гнозис - это процесс непрерывного обновления, уточнения, конкретизации образа, хранимого в матрице памяти, под влиянием повторного сопоставления его с принимаемой информацией.

Тотальная агнозия, при которой наблюдается полная дезориентировка, встречается нечасто. Значительно чаще нарушается гнозис в какой-либо одной анализаторной системе, причем в зависимости от степени поражения выраженность агнозии различна.

Зрительные агнозии возникают при поражении затылочных отделов коры. Больной видит предмет, но не узнает его. Здесь могут быть различные варианты. В одних случаях больной правильно описывает внешние свойства предмета (цвет, форму, величину), однако узнать предмет не может. Например, яблоко больной описывает как «что-то круглое, розовое», не узнавая в яблоке яблоко. Но если дать больному этот предмет в руки, то он при ощупывании узнает его. Бывают случаи, когда больной не узнает знакомые лица. Некоторые больные с подобным расстройством вынуждены запоминать людей по каким-то другим признакам (одежда, родинка и т. д.). В других случаях агнозий больной узнает предмет, называет его свойства и функцию, но не может вспомнить, как он называется. Эти случаи относятся к группе речевых расстройств.

При некоторых формах зрительных агнозий нарушаются пространственная ориентировка, зрительная память. Практически уже при неузнавании предмета можно говорить о нарушениях механизмов памяти, поскольку воспринимаемый предмет не может быть сличен с его образом в гностической матрице. Но бывают и случаи, когда при повторном предъявлении предмета больной говорит, что уже видел его, хотя узнать по-прежнему не может. При нарушениях же пространственной ориентировки больной не только не узнает знакомых ему ранее лиц, домов и т. д., но и может много раз ходить по одному и тому же месту, не подозревая об этом.

Нередко при зрительных агнозиях страдает и узнавание букв, цифр, возникает потеря способности к чтению. Изолированный тип этого расстройства будет разобран при анализе речевой функции.

Для исследования зрительного гнозиса используют набор предметов. Предъявляя их обследуемому, просят определить, описать их внешний вид, сравнить, какие предметы больше, какие меньше. Применяют также набор картинок, цветных, однотонных и контурных. Оценивают не только узнавание предметов, лиц, но и сюжетов. Попутно можно проверить и зрительную память: предъявить несколько картинок, затем перемешать их с ранее не показываемыми и попросить ребенка выбрать знакомые картинки. При этом учитывают и время работы, настойчивость, утомляемость.

Следует иметь в виду, что дети узнают контурные картинки хуже, чем цветные и однотонные. Понимание сюжета связано с возрастом ребенка и степенью умственного развития. В то же время агнозии в классическом виде у детей встречаются редко вследствие незавершенной дифференциации корковых центров.

Слуховые агнозии. Возникают при поражении височной доли в области извилины Гешля. Больной не может узнавать знакомые ранее звуки: тиканье часов, звон колокольчика, шум льющейся воды. Возможны нарушения узнавания музыкальных мелодий - амузия. В ряде случаев нарушается определение направления звука. При некоторых видах слуховой агнозии больной не в состоянии различать частоту звуков, например ударов метронома.

Сенситивные агнозии обусловлены нарушением узнавания тактильных, болевых, температурных, проприоцептивных образов или их сочетаний. Они возникают при поражении теменной области. Сюда относится астереогноз, расстройства схемы тела. При некоторых вариантах астереогноза больной не только не может определить предмет на ощупь, но и не в состоянии определить форму предмета, особенность его поверхности. К сенситивным агнозиям относится также анозогнозия, при которой больной не осознает своего дефекта, например паралича. Фантомные ощущения можно отнести к нарушениям сенситивного гнозиса.

При обследовании детей следует иметь в виду, что маленький ребенок не всегда может правильно показать части своего тела; это же относится и к больным, страдающим слабоумием. В подобных случаях говорить о расстройстве схемы тела, конечно, не приходится.

Вкусовые и обонятельные агнозии встречаются редко. Кроме того, узнавание запахов очень индивидуально, во многом связано с личным опытом человека.

Праксис и его расстройства . Под праксисом понимают целенаправленное действие. Человек усваивает в процессе жизни массу специальных двигательных актов. Многие из этих навыков, формируясь при участии высших корковых механизмов, автоматизируются и становятся такой же неотъемлемой способностью человека, как и простые движения. Но при поражении корковых механизмов, участвующих в осуществлении этих актов, возникают своеобразные двигательные расстройства - апраксии, при которых нет ни параличей, ни нарушений тонуса или координации и даже возможны простые произвольные движения, но более сложные, чисто человеческие двигательные акты нарушаются. Больной вдруг оказывается не в состоянии выполнять такие, казалось бы, простые действия, как рукопожатие, застегивание пуговиц, причесывание, зажигание спички и т. д. Апраксия возникает прежде всего при поражении теменно-височно-затылочной области доминантного полушария. При этом страдают обе половины тела. Апраксия может возникать также при поражении субдоминантного правого полушария (у правшей) и мозолистого тела, связывающего оба полушария. В этом случае апраксия определяется только слева. При апраксии страдает план действия, т. е. составление непрерывной цепочки двигательных автоматизмов. Здесь уместно привести слова К. Маркса: «Человеческое действие тем и отличается от работы «наилучшей пчелы», что прежде чем строить, человек уже построил в своей голове. В конце процесса труда получается результат, который уже перед началом этого процесса имелся идеально, т. е. в представлении работника».

Вследствие нарушения плана действия при попытках выполнить задание больной совершает много ненужных движений. В отдельных случаях наблюдается парапраксия, когда выполняется действие, лишь отдаленно напоминающее данное задание. Иногда наблюдаются также персеверации, т. е. застревание на каких-либо действиях. Например, больного просят произвести манящее движение рукой. После выполнения этого задания предлагают погрозить пальцем, но больной по-прежнему выполняет первое действие.

В некоторых случаях при апраксии обычные, бытовые действия сохраняются, но утрачиваются профессиональные навыки (например, умение пользоваться рубанком, отверткой и т. д.).

По клиническим проявлениям различают несколько видов апраксии: моторную, идеаторную и конструктивную.

Моторная апраксия. Больной не может выполнять действий по заданию и даже по подражанию. Его просят разрезать бумагу ножницами, зашнуровать ботинок, разлиновать бумагу при помощи карандаша и линейки и т. д., но больной, хотя и понимает задание, не может его выполнить, проявляя полную беспомощность. Даже если показать, как это делается, больной все равно не может повторить движение. В отдельных случаях оказывается невозможным выполнение таких простых действий, как приседание, повороты, хлопание в ладоши.

Идеаторная апраксия. Больной не может выполнять действия по заданию с реальными и воображаемыми предметами (например, показать, как причесываются, размешивают сахар в стакане и т. д.), в то же время действия по подражанию сохранены. В некоторых случаях больной может автоматически, не задумываясь, выполнять определенные действия. Например, целенаправленно он не может застегнуть пуговицу, но выполняет это действие автоматически.

Конструктивная апраксия. Больной может выполнять различные действия по подражанию и по устному приказу, но оказывается не в состоянии создать качественно новый двигательный акт, сложить целое из частей, например, составить из спичек определенную фигуру, сложить пирамиду и т. д.

Некоторые варианты апраксии связаны с нарушением гнозиса. Больной не узнает предмета или у него нарушена схема тела, поэтому он не в состоянии выполнять заданий или выполняет их неуверенно и не совсем правильно.

Для исследования праксиса предлагают ряд заданий (присесть, погрозить пальцем, причесаться и т. д.). Предъявляют также задания на действия с воображаемыми предметами (просят показать, как едят, как звонят по телефону, как пилят дрова и т. д.). Оценивают, как больной может подражать показываемым действиям.

Для исследования гнозиса и праксиса применяют также специальные психологические методики. Среди них важное место занимают доски Сегена с углублениями разной формы, в которые нужно вложить соответствующие углублениям фигуры. Этот метод позволяет оценивать и степень умственного развития. Применяют также методику Косса: набор кубиков разной окраски. Из этих кубиков нужно сложить узор, соответствующий показанному на картинке. Более старшим детям предлагают также куб Линка: нужно из 27 по-разному окрашенных кубиков сложить куб, чтобы все его стороны были одинакового цвета. Больному показывают собранный куб, затем разрушают его и просят сложить заново.

В этих методиках большое значение имеет то, как выполняет ребенок задание: действует ли он по методу проб и ошибок или по определенному плану.

Рис. 56. Схема связей речевых центров и регуляции речевой деятельности.

1 - центр письма; 2 - центр Брока; 3 - центр праксиса; 4 - центр проприоцептивного гнозиса; 5 - центр чтения; 6 - центр Вернике; 7 - центр слухового гнозиса; 8 - центр зрительного гнозиса.

Важно помнить, что праксис формируется по мере созревания ребенка, поэтому маленькие дети не могут выполнять еще таких простых действий, как причесывание, застегивание пуговиц и т. д. Апраксии в их классическом виде, как и агнозии, встречаются преимущественно у взрослых.

Речь и ее нарушения. В осуществлении речевой функции, а также письма и чтения принимают участие зрительный, слуховой, двигательный и кинестетический анализаторы. Большое значение имеют сохранность иннервации мышц языка, гортани, мягкого неба, состояние придаточных пазух и полости рта, играющих роль резонаторных полостей. Кроме того, важна координация дыхания и произношения звуков.

Для нормальной речевой деятельности необходимо согласованное функционирование всего головного мозга и других отделов нервной системы. Речевые механизмы имеют сложную и многоступенчатую организацию (рис. 56).

Речь - важнейшая функция человека, поэтому в ее осуществлении принимают участие корковые речевые зоны, расположенные в доминантном полушарии (центры Брока и Вернике), двигательные, кинетические, слуховые и зрительные области, а также проводящие афферентные и эфферентные пути, относящиеся к пирамидной и экстрапирамидной системам, анализаторам чувствительности, слуха, зрения, бульбарные отделы мозга, зрительный, глазодвигательный, лицевой, слуховой, языкоглоточный, блуждающий и подъязычные нервы.

Сложность, многоступенчатость речевых механизмов обусловливает и разнообразие речевых расстройств. При нарушении иннервации речевого аппарата возникает дизартрия - нарушение артикуляции, которая может быть обусловлена центральным или периферическим параличом речедвигательного аппарата, поражением мозжечка, стриопаллидарной системы.

Различают также дислалию - фонетически неправильное произношение отдельных звуков. Дислалия может носить функциональный характер и при логопедических занятиях довольно успешно устраняется. Под алалией понимают задержку речевого развития. Обычно к VA годам ребенок начинает говорить, но иногда это происходит значительно позже, хотя ребенок хорошо понимает обращенную к нему речь. Задержка речевого развития влияет и на психическое развитие, поскольку речь - важнейшее средство информации для ребенка. Однако встречаются и случаи алалии, связанные со слабоумием. Ребенок отстает в психическом развитии, и поэтому у него не формируется речь. Эти различные случаи алалии необходимо дифференцировать, так как они имеют разный прогноз.

С развитием речевой функции в доминантном полушарии (у правшей-в левом, у левшей - в правом) формируются гностические и практические речевые центры, а впоследствии - центры письма и чтения.

Корковые речевые расстройства представляют собой варианты агнозий и апраксий. Различают экспрессивную (моторную) и импрессивную (сенсорную) речь. Корковое нарушение моторной речи является речевой апраксией, сенсорной речи - речевой агнозией. В некоторых случаях нарушается вспоминание нужных слов, т. е. страдают механизмы памяти. Речевые агнозии и апраксий называются афазиями.

Следует помнить, что нарушения речи могут быть следствием общей апраксий (апраксия туловища, конечностей) или оральной апраксий, при которой больной теряет навык открывать рот, надувать щеки, высовывать язык. Эти случаи не относятся к афазиям; речевая апраксия здесь возникает вторично как проявление общих праксических расстройств.

Речевые расстройства в детском возрасте в зависимости от причин их возникновения можно разделить на следующие группы:

I. Речевые нарушения, связанные с органическим поражением центральной нервной системы. В зависимости от уровня поражения речевой системы они делятся на:

1) афазии-распад всех компонентов речи в результате поражения корковых речевых зон;

2) алалии - системное недоразвитие речи вследствие поражений корковых речевых зон в доречевом периоде;

3) дизартрии - нарушение звукопроизносительной стороны речи в результате нарушения иннервации речевой мускулатуры.

В зависимости от локализации поражения выделяют несколько форм дизартрии.

II. Речевые нарушения, связанные с функциональными изменениями

центральной нервной системы:

1) заикание;

2) мутизм и сурдомутизм.

III. Речевые нарушения, связанные с дефектами строения артикуляционного аппарата (механические дислалии, ринолалия).

IV. Задержки речевого развития различного генеза (при недоношенности, соматической ослабленности, педагогической запущенности и т. д.).

Сенсорная афазия (афазия Вернике), или словесная «глухота», возникает при поражении левой височной области (средние и задние отделы верхней височной извилины). А. Р. Лурия выделяет две формы сенсорной афазии: акустико-гностическую и акустико-мнестическую.

Основу дефекта при акустико-гностической форме составляет нарушение слухового гнозиса. Больной не дифференцирует на слух сходные по звучанию фонемы при отсутствии глухоты (рассматривается фонематический анализ), в результате чего искажается и нарушается понимание смысла отдельных слов и предложений. Выраженность этих нарушений может быть различной. В наиболее тяжелых случаях обращенная речь вообще не воспринимается и кажется речью на иностранном языке. Эта форма возникает при поражении задней части верхней височной извилины левого полушария - поле 22 Бродмана.

Значение различных участков коры полушарий

головного мозга.

2. Двигательные функции.

3. Функции кожной и проприорицептивной

чувствительности.

4. Слуховые функции.

5. Зрительные функции.

6. Морфологические основы локализации функций в

коре головного мозга.

Ядро двигательного анализатора

Ядро слухового анализатора

Ядро зрительного анализатора

Ядро вкусового анализатора

Ядро кожного анализатора

7. Биоэлектрическая активность головного мозга.

8. Литература.


ЗНАЧЕНИЕ РАЗЛИЧНЫХ УЧАСТКОВ КОРЫ БОЛЬШИХ

ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА

С давних времен между учеными идет спор о местонахождении (локализации) участков коры головного мозга, связанных с различными функциями организма. Были высказаны самые разнообразные и взаимно противоположные точки зрения. Одни считали, что каждой функции нашего организма соответствует строго определенная точка в коре головного мозга, другие отрицали наличие каких бы то ни было центров; любую реакцию они приписывали всей коре, считая ее целиком однозначной в функциональном отношении. Метод условных рефлексов дал возможность И. П. Павлову выяснить ряд неясных вопросов и выработать современную точку зрения.

В коре головного мозга нет строго дробной локализации фун кций. Это следует из экспериментов над животными, когда после разрушения определенных участков коры, например двигательного анализатора, через несколько дней соседние участки берут на себя функцию разрушенного участка и движения животного восстанавливаются.

Эта способность корковых клеток замещать функцию выпавших участков связана с большой пластичностью коры головного мозга.

И. П. Павлов считал, что отдельные области коры имеют разное функциональное значение. Однако между этими областями не существует строго определенных границ. Клетки одной области переходят в соседние области.

Рисунок 1. Схема связи отделов коры с рецепторами.

1 – спинной или продолговатый мозг; 2 – промежуточный мозг; 3 – кора головного мозга


В центре этих областей находятся скопления наиболее специализированных клеток-так называемые ядра анализатора, а на периферии-менее специализированные клетки.

В регуляции функций организма принимают участие не строго очерченные какие-то пункты, а многие нервные элементы коры.

Анализ и синтез поступающих импульсов и формирование ответной реакции на них осуществляются значительно большими областями коры.

Рассмотрим некоторые области, имеющие преимущественно то или иное значение. Схематическое расположение местонахождения этих областей приведено на рисунке 1.


Двигательные функции. Корковый отдел двигательного анализатора расположен главным образом в передней центральной извилине, кпереди от центральной (роландовой) борозды. В этой области находятся нервные клетки, с деятельностью которых связаны все движения организма.

Отростки крупных нервных клеток, находящихся в глубоких слоях коры, спускаются в продолговатый мозг, где значительная часть их перекрещивается, т. е. переходит на противоположную сторону. После перехода они опускаются по спинному мозгу, где перекрещивается остальная часть. В передних рогах спинного мозга они вступают в контакт с находящимися здесь двигательными нервными клетками. Таким образом, возбуждение, возникшее в коре, доходит до двигательных нейронов передних рогов спинного мозга и затем уже по их волокнам поступает к мышцам. Ввиду того что в продолговатом, а частично и в спинном мозгу происходит переход (перекрест) двигательных путей на противоположную сторону, возбуждение, возникшее в левом полушарии головного мозга, поступает в правую половину тела, а в левую половину тела поступают импульсы из правого полушария. Вот почему кровоизлияние, ранение или какое-либо другое поражение одной из сторон больших полушарий влечет за собой нарушение двигательной деятельности мышц противоположной половины тела.

Рисунок 2. Схема отдельных областей коры больших полушарий головного мозга.

1 – двигательная область;

2 – область кожной

и проприорицептивной чувствительности;

3 – зрительная область;

4 – слуховая область;

5 – вкусовая область;

6 – обонятельная область


В передней центральной извилине центры, иннервирующие разные мышечные группы, расположены так, что в верхней части двигательной области находятся центры движений нижних конечностей, затем ниже-центр мышц туловища, еще ниже-центр передних конечностей и, наконец, ниже всех-центры мышц головы.

Центры разных мышечных групп представлены неодинаково и занимают неравномерные области.


Функции кожной и проприоцептивной чувствительности. Область кожной и проприоцептивной чувствительности у человека находится преимущественно позади центральной (роландовой) борозды в задней центральной извилине.

Локализация этой области у человека может быть установлена методом электрического раздражения коры головного мозга во время операций. Раздражение различных участков коры и одновременньш опрос больного об ощущениях, которые он при этом испытывает, дают возможность составить довольно четкое представление об указанной области. С этой же областью связано так называемое мышечное чувство. Импульсы, возникающие в проприорецепторах-рецепторах, находящихся в суставах, сухожилиях н мышцах, поступают преимущественно в этот отдел коры.

Правое полушарие воспринимает импульсы, идущие по центростремительным волокнам преимущественно с левой, а левое полушарие-преимущественно с правой половины тела. Этим объясняется то, что поражение, допустим, правого полушария вызовет нарушение чувствительности преимущественно левой стороны.

Слуховые функции. Слуховая область расположена в височной доле коры. При удалении височных долей нарушаются сложные звуковые восприятия, так как нарушается возможность анализа и синтеза звуковых восприятий.

Зрительные функции. Зрительная область находится в затылочной доле коры головного мозга. При удалении затылочных долей головного мозга у собаки наступает потеря зрения. Животное не видит, натыкается на предметы. Сохраняются только зрачковые рефлексы У человека нарушение зрительной области одного из полушарий вызывает выпадение половины зрения каждого глаза. Если поражение коснулось зрительной области левого полушария, то выпадают функции носовой части сетчатки одного глаза и височной части сетчатки другого глаза.

Такая особенность поражения зрения связана с тем, что зрительные нервы по пути к коре частично перекрещиваются.


Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры).

Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов организма и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для диагностики мест поражения в полушариях головного мозга.

Представление о локализации функций в коре головного мозга связано прежде всего с понятием о корковом центре. Еще в 1874 г. киевский анатом В. А, Бец выступил с утверждением, что каждый учасгок коры отличается по строению от других участков мозга. Этим было положено начало учению о разнокачественности коры головного мозга - цитоархитектонике (цитос - клетка, архитектонес - строю). В настоящее время удалось выявить более 50 различных участков коры - корковых цитоархитектонических полей, каждое из которых отличается от других по строению и расположению нервных элементов. Из этих полей, обозначаемых номерами, составлена специальная карта мозговой коры человека.

П
о И.П.Павлову, центр-это мозговой конец так называемого анализатора. Анализатор - это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтезирование анализаторов друг с другом и с разными деятельностями организма.


Рисунок 3. Карта цитоархитектонических полей мозга человека (по данным института моэга АМН СССР) Вверху - верхнелатеральная поверхность,внизу- медиальная поверхносгь. Объяснение в тексте.


В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора - это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топографию корковых отделов анализаторов, т. е. главнейшие воспринимающие участки коры полушарий большого мозга.

Прежде всего рассмотрим корковые концы анализаторов, воспринимающих раздражения из внутренней среды организма.

1. Ядро двигательного анализатора, т. е. анализатора проприоцептивных (кинестетических) раздражении, исходящих от костей, суставов, скелетных мышц и их сухожилий, находится в предцентральной извилине (поля 4 и 6} и lobulus paracentralis. Здесь замыкаются двигательные условные рефлексы. Двигательные параличи, возникающие при поражении двигательной зоны, И. П. Павлов объясняет не повреждением двигательных эфферентных нейронов, а нарушением ядра двигательного анализатора, вследствие чего кора не воспринимает кинестетические раздражения и движения становятся невозможными. Клетки ядра двигательного анализатора заложены в средних слоях коры моторной зоны. В глубоких ее слоях (V, отчасти VI) лежат гигантские пирамидные клетки, представляющие собой эфферентные нейроны, которые И. П. Павлов рассматривает как вставочные нейроны, связывающие кору мозга с подкорковыми ядрами, ядрами черепных нервов и передними рогами спинного мозга, т. е. с двигательными нейронами. В предцентральной извилине тело человека, так же как и в задней, спроецировано вниз головой. При этом правая двигательная область связана с левой половиной тела и наоборот, ибо начинающиеся от нее пирамидные пути перекрещиваются частью в продолговатом, а частью в спинном мозге. Мышцы туловища, гортани, глотки находятся под влиянием обоих полушарий. Кроме предцентральной извилины, проприоцептивные импульсы (мышечно-суставная чувствительность) приходят и в кору постцентральной извилины.

2. Ядро двигательного анализатора, имеющего-отношение к сочетанному повороту головы и глаз в противоположную сторону, помещается в средней лобной извилине, в премоторной области (поле 8). Такой поворот происходит и при раздражении поля 17, расположенного в затылочной доле в соседстве с ядром зрительного анализатора. Так как при сокращении мышц глаза в кору мозга (двигательный анализатор, поле 8) всегда поступают не только импульсы от рецепторов этих мышц, но и импульсы от еет-чатки (зрительный анализатор, поле 77), то различные зрительные раздражения всегда сочетаются с различным положением глаз, устанавливаемым сокращением мышц глазного яблока.

3. Ядро двигательного анализатора, посредством которого происходит синтез целенаправленных сложных профессиональных, трудовых и спортивных движений, помещается в левой (у правшей) нижней теменной дольке, в gyrus supramarginalis (глубокие слои поля 40). Эти координированные движения, образованные по принципу временных связей и выработанные практикой индивидуальной жизни, осуществляются через связь gyrus supramarginalis с предцентральной извилиной. При поражении поля 40 сохраняется способность к движению вообще, но появляется неспособность совершать целенаправленные движения, действовать - апраксия (праксия - действие, практика).

4. Ядро анализатора положения и движения головы - статический анализатор (вестибулярный аппарат) в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях реактивной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.

5. Ядро анализатора импульсов, идущих от внутренностей и сосудов, находится в нижних отделах передней и задней центральных извилин. Центростремительные импульсы от внутренностей, сосудов, непроизвольной мускулатуры и желез кожи поступают в этот отдел коры, откуда отходят центробежные пути к подкорковым вегетативным центрам.

В премоторной области (поля 6 и 8) совершается объединение вегетативных функций.

Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира.

1. Ядро слухового анализатора лежит в средней части верхней височной извилины, на поверхности, обращенной к островку, - поля 41, 42, 52, где проецирована улитка. Повреждение ведет к глухоте.

2. Ядро зрительного анализатора находится в затылочной доле - поля 18, 19. На внутренней поверхности затылочной доли, по краям sulcus Icarmus, в поле 77 заканчивается зрительный путь. Здесь спроецирована сетчатка глаза. При поражении ядра зрительного анализатора наступает слепотa. Выше поля 17 расположено поле 18, при поражении которого зрение сохраняется и только теряется зрительная память. Еще выше находится поле при поражении которого утрачивается ориентация в непривычной обстанвке.


3. Ядро вкусового анализатора, по одним данным, находится в нижней постцентральной извилине, близко к центрам мышц рта и языка, по другим - в ближайшем соседстве с корковым концом обонятельного анализатора, чем объясняется тесная связь обонятельных и вкусовых ощу-ний. Установлено, что расстройство вкуса наступает при поражении поля 43.

Анализаторы обоняния, вкуса и слуха каждого полушария связаны с рецепторами соответствующих органов обеих сторон тела.

4. Ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в постцентральной извилине (поля 7, 2, 3) и в пе верхней теменной области (поля 5 и 7).


Частный вид кожной чувствительности - узнавание предметов на ощупь - стереогнозия (стереос - пространственный, гнозис - знание) связана с участком коры верхней теменной дольки (поле 7) перекрестно: левое полушарие соответствует правой руке, правое - левой руке. При поражении поверхностных слоев поля 7 утрачивается способность узнавать предметы на ощупь, при закрытых глазах.


Биоэлектрическая активность головного мозга.

Отведение биопотенциалов головного мозга - электроэнцефалография-дает представление об уровне физиологической активности головного мозга. Кроме метода электроэнцефалографии-записи биоэлектрических потенциалов, используется метод энцефалоскопии-регистрации колебаний яркости свечения множества точек мозга (от 50 до 200).

Электроэнцефалограмма является интегративным пространственно-временным показателем спонтанной электрической активности мозга. В ней различают амплитуду (размах) колебаний в микровольтах и частоту колебаний в герцах. В соответствии с этим в электроэнцефалограмме различают четыре типа волн: -, -, - и -ритмы. Для -ритма характерны частоты в диапазоне 8-15 Гц, при амплитуде колебаний 50-100 мкВ. Он регистрируется только у людей и высших обезьян в состоянии бодрствования, при закрытых глазах и при отсутствии внешних раздражителей. Зрительные раздражители тормозят -ритм.

У отдельных людей, обладающих живым зрительным воображением, -ритм может вообще отсутствовать.

Для деятельного мозга характерен (-ритм. Это электрические волны с амплитудой от 5 до 30 мкВ и частотой от 15 до 100 Гц Он хорошо регистрируется в лобных и центральных областях головного мозга. Во время сна появляется -ритм. Он же наблюдается при отрицательных эмоциях, болезненных состояниях. Частота потенциалов -ритма от 4 до 8 Гц, амплитуда от 100 до 150 мкВ Во время сна появляется и -ритм - медленные (с частотой 0,5-3,5 Гц), высокоамплитудные (до 300 мкВ) колебания электрической активности мозга.

Помимо рассмотренных видов электрической активности, у человека регистрируется Е-волна (волна ожидания раздражителя) и веретенообразные ритмы. Волна ожидания регистрируется при выполнении сознательных, ожидаемых действий. Она предшествует появлению ожидаемого раздражителя во всех случаях, даже при неоднократном его повторении. По-видимому, ее можно рассматривать как электроэнцефалографический коррелят акцептора действия, обеспечивающего предвидение результатов действия до его завершения. Субъективная готовность отвечать на действие стимула строго определенным образом достигается психологической установкой (Д. Н. Узнадзе). Веретенообразные ритмы непостоянной амплитуды, с частотой от 14 до 22 Гц, появляются во время сна. Различные формы жизне деятельности приводят к существенному изменению ритмов биоэлектрической активности мозга.

При умственной работе усиливается -ритм, -ритм при этом исчезает. При мышечной работе статического характера наблюдается десинхронизация электрической активности мозга. Появляются быстрые колебания с низкой амплитудой.Во время динамической работы пе-. риоды десинхронизированной и синхронизированной активности наблюдаются соответственно в моменты рабогы и отдыха.

Образование условного рефлекса сопровождается десинхронизацией волновой активности мозга.

Десинхронизация волн происходит при переходе от сна к бодрствованию. При этом веретенообразные ритмы сна сменяются

-ритмом, увеличивается электрическая активность ретикулярной формации. Синхронизация (одинаковые по фазе и направлению волны)

характерна для тормозного процесса. Она наиболее отчетливо выражена при выключении ретикулярной формации стволовой части мозга. Волны электроэнцефалограммы, по мнению большинства исследователей, являются результатом суммации тормозных и возбуждающих постсинаптических потенциалов. Электрическая активность мозга не является простым отражением обменных процессов в нервной ткани. Установлено, в частности, что в импульсной активности отдельных скоплений нервных клеток обнаруживаются признаки акустического и семантического кодов.

Кроме специфических ядер таламуса возникают и развиваются ассоциативные ядра, имеющие связи с неокортексом и определяющие развитие конечного мозга. Третьим источником афферентных воздействий на кору больших полушарий является гипоталамус, который играет роль высшего регуляторного центра вегетативных функций. У млекопитающих филогенетически более древние отделы переднего гипоталамуса связаны с...

Затрудняется формирование условных рефлексов, нарушаются процессы памяти, теряется избирательность реакций и отмечается неумеренное их усиление. Большой мозг состоит из почти идентичных половин – правого и левого полушарий, которые связаны мозолистым телом. Комиссуральные волокна связывают симметричные зоны коры. Тем не менее, кора правого и левого полушарий не симметричны не только внешне, но и...

Подход к оценке механизмов работы высших отделов головного мозга с использованием условных рефлексов был столь успешным, что позволил Павлову создать новый раздел физиологии - «Физиологию высшей нервной деятельности», науку о механизмах работы больших полушарий головного мозга. БЕЗУСЛОВНЫЕ И УСЛОВНЫЕ РЕФЛЕКСЫ Поведение животных и человека представляет собой сложную систему взаимосвязанных...

В настоящее время принято подразделение коры на сенсорные, двигательные и ассоциативные (неспецифические) зоны (области).

Двигательные. Выделяют первичную и вторичную двигательные зоны. В первичной расположены нейроны, ответственные за движение мышц лица, туловища и конечностей. Раздражение первичной двигательной зоны вызывают сокращения мышц противоположной стороны тела. При поражении этой зоны утрачивается способность к тонким координированным движениям, особенно пальцами рук. Вторичная двигательная зона связана с планированием и координацией произвольных движений. Здесь регенерируется потенциал готовности примерно за 1 секунду до начала движения.

Сенсорная зона состоит из первичной и вторичной. В первичной сенсорной зоне формируется пространственное топографическое представительство частей тела. Вторичная сенсорная зона состоит из нейронов, отвечающих за действие нескольких раздражителей. Сенсорные зоны локализованы в основном в теменной доле ГМ. Здесь имеется проекция кожной чувствительности, болевых, температурных, тактильных рецепторов. В затылочной доле расположена первичная зрительная область.

Ассоциативные. Включают талотеменную, талолобную и таловисочную доли.

Сенсорная зона коры головного мозга.

Сенсорные зоны - это функциональные зоны коры головного мозга, которые через восходящие нервные пути получают сенсорную информацию от большинства рецепторов тела. Они занимают отдельные участки коры, связанные с определенными видами ощущений. Размеры этих зон коррелируют с числом рецепторов в соответствующей сенсорной системе.

Первичные сенсорные зоны и первичные моторные зоны (проекционные зоны);

Вторичные сенсорные зоны и вторичные моторные зоны (ассоциативные одномодальные зоны);

Третичные зоны (ассоциативные разномодальные зоны);

Первичные сенсорные и моторные зоны занимают менее 10% поверхности коры головного мозга и обеспечивают наиболее простые сенсорные и двигательные функции.

Соматосенсорная кора - область коры головного мозга, которая отвечает за регуляцию определенных сенсорных систем. Первая соматосенсорная зона расположена на постцентральной извилине непосредственно позади глубокой центральной борозды. Вторая соматосенсор­ная зона находится на верхней стенке боковой борозды, разделяющей теменную и височную доли. В этих зонах обнаружены терморецептивные и ноцицептивные (болевые) нейроны. Первая зона (I) достаточно хорошо изучена. Здесь имеют представительст­во практически все участки поверхности тела. В результате систематических исследований получена достаточно точная картина представительств тела в этой зоне коры головного мозга. В литературных и научных источниках такое представительство получило наименование “соматосенсорного гомункулуса” (подробно см. юнита 3). Соматосенсорная кора этих зон, с учетом шестислойного строения, организована в виде функциональных единиц - колонок нейронов (диаметр 0,2 - 0,5 мм), которые наделены двумя специфическими свойствами: ограниченным горизонтальным распространением афферентных нейронов и вертикальной ориентацией дендритов пирамидных клеток. Нейроны одной колонки возбуждаются рецепторами только одного типа, т.е. специфическими рецепторными окончаниями. Обработка информации в колонках и между ними осуществляется иерархично. Эфферентные связи первой зоны передают переработанную информацию к двигательной коре (обеспечивается регуляция движений по обратной связи), теменно-ассоциативной зоне (обеспечивается интеграция зрительной и тактильной информации) и к таламусу, ядрам заднего столба, спинному мозгу (обеспечивается эфферентная регуляция потока афферентной информации). Первая зона функционально обеспечивает точное тактильное различение и сознательное восприятие стимулов на поверхности тела. Вторая зона (II) изучена меньше и она занимает значительно меньше места. Филогенетически вторая зона старше первой и участвует практически во всех соматосенсорных процессах. Рецептивные поля нейронных колонок второй зоны находятся на обеих сторонах тела, а их проекции симметричны. Данная зона координирует действия сенсорной и двигательной информации, например, при ощупывании предметов двумя руками.



© 2024 skypenguin.ru - Советы по уходу за домашними животными