Взаимодействие аллельных генов. Взаимодействие неаллельных генов Типы взаимодействия аллельных неаллельных генов

Взаимодействие аллельных генов. Взаимодействие неаллельных генов Типы взаимодействия аллельных неаллельных генов

Комплементарность

Основная статья: Комплементарность (генетика)

Комплемента́рное (дополнительное) действие генов - это вид взаимодействия неаллельных генов, доминантные аллели кото­рых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы . Наличие в генотипе доминантных генов А или В обу­словливает сферическую форму плодов, а рецессивных - удли­нённую. При наличии в генотипе одновременно доминантных ге­нов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фе­нотипу: из каждых 16 растений 9 будут иметь дисковидные пло­ды, 6 - сферические и 1 - удлинённые.

Эпистаз

Эписта́з - взаимодействие неаллельных генов, при котором один из них подавляется другим. Подавляющий ген называется эпистатичным, подавляемый - гипостатичным. Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I. Эпистатическое взаимодействие неаллельных генов может быть доминантным и рецессивным. При доминантном эпистазе проявление гипостатичного гена (В, b) подавляется доминантным эпистатичным геном (I > В, b). Расщепление по фенотипу при доминантном эпистазе может происходить в соотношении 12:3:1, 13:3, 7:6:3. Рецессивный эпистаз - это подавление рецессивным аллелем эпистатичного гена аллелей гипостатичного гена (i > В, b). Расщепление по фенотипу может идти в соотношении 9:3:4, 9:7, 13:3.

Полимерия

Полимери́я - взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же при­знака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопи­тельной) полимерии степень проявления признака зависит от суммирующего действия генов. Чем больше доминантных алле­лей генов, тем сильнее выражен тот или иной признак. Расщепле­ние F2 по фенотипу происходит в соотношении 1:4:6:4:1.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление по фенотипу происходит в соотношении 15:1.


Wikimedia Foundation . 2010 .

Смотреть что такое "Взаимодействие неаллельных генов" в других словарях:

    Взаимодействие полимерных генов - * узаемадзеянне палімерных генаў * polymerіс gene interaction однозначное аддитивное (суммарное) действие ряда неаллельных генов на развитие одного и того же признака. Соответствующие гены называются полимерными, или множественными. Полимерно… …

    Взаимодействие генотип-среда - * узаемадзеянне генатып асяроддзе * genotypemedium interaction нелинейная связь генотипа и среды, заключающаяся в том, что генотипы по разному реагируют на разные условия среды, напр., ранжировка фенотипов в одной среде 1, 2, 3, а в другой 1, 3,… … Генетика. Энциклопедический словарь

    взаимодействие генов - Любое взаимодействие неаллельных генов в пределах генома (генотипа), отражающееся на фенотипе и, в частности, ведущее к наследованию признаков с нарушением законов Менделя; различают ряд форм В.г. комплементарность, эпистаз, межгенная супрессия,… … Справочник технического переводчика

    Взаимодействие генов эпистатическое эпистаз - Взаимодействие генов эпистатическое, эпистаз * узаемадзеянне генаў эпістатычнае, эпістаз * epistatic gene interaction or epistasis нереципрокное (ср.) взаимодействие неаллельных генов. Различают: а) доминантный эпистаз, т. е. подавление… … Генетика. Энциклопедический словарь

    Gene interaction взаимодействие генов. Любое взаимодействие неаллельных генов в пределах генома (генотипа), отражающееся на фенотипе и, в частности, ведущее к наследованию признаков с нарушением законов Менделя; различают ряд форм В.г.… … Молекулярная биология и генетика. Толковый словарь.

    генов поток - * генаў паток * gene flow обмен генами между разными популяциями одного и того же вида за счет мигрантов, что приводит к временному изменению частоты генов многих локусов в общем пуле генов (см.) популяции реципиента (см.). Генов распределение… … Генетика. Энциклопедический словарь

    Взаимодействие генов модифицирующее - * узаемадзеянне генаў мадыфікавальнае * modificative gene interaction усиление или ослабление действия генов главных (см.) действием др., неаллельных им генов или генов модификаторов (см.). При этом гены модификаторы, усиливающие эффект основного … Генетика. Энциклопедический словарь

    геномная библиотека банк генов - геномная библиотека, банк генов * геномная бібліятэка, банк генаў * genomic library or gene bank набор клонированных фрагментов ДНК, представляющих индивидуальный (групповой, видовой) геном. У млекопитающих (в т. ч. человека) геномы крупные,… … Генетика. Энциклопедический словарь

    Взаимодействие неаллельных множественных генов, однонаправленно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса… … Википедия

    Взаимодействие генов, при котором активность одного гена находится под влиянием другого гена (генов), неаллельного ему. Ген, подавляющий фенотипические проявления другого, называется эпистатичным; ген, чья активность изменена или подавлена,… … Википедия

Теперь обратимся к проблеме взаимодействия неаллельных генов. Если развитие признака контролируется более чем одной парой генов, то это означает, что он находится под полигенным контролем. Установлено несколько основных типов взаимодействия генов: комплементарность, эпистаз, полимерия и плейотропия.

Первый случай неаллельного взаимодействия был описан в качестве примера отклонения от законов Менделя английскими учеными У. Бетсоном и Р. Пеннетом в 1904 г. при изучении наследования формы гребня у кур. Различные породы кур характеризуются разной формой гребня. Виандотты имеют низкий, правильный, покрытый сосочками гребень, известный под названием “розовидного”. Брамы и некоторые бойцовые куры обладают узким и высоким гребнем с тремя продольными возвышениями — “гороховидным”. Леггорны имеют простой или листовидный гребень, состоящий из одной вертикальной пластинки. Гибридологический анализ показал, что простой гребень ведет себя как полностью рецессивный признак по отношению к розовидному и гороховидному. Расщепление в F 2 соответствует формуле 3: 1. При скрещивании же между собой рас с розовидным и гороховидным гребнем у гибридов первого поколения развивается совершенно новая форма гребня, напоминающая половинку ядра грецкого ореха, в связи с чем гребень был назван “ореховидным”. При анализе второго поколения было установлено, что соотношение разных форм гребня в F 2 соответствует формуле 9: 3: 3: 1, что указывало на дигибридный характер скрещивания. Была разработана схема скрещивания, объясняющая механизм наследования этого признака.

В определении формы гребня у кур принимают участие два неаллельных гена. Доминантный ген R контролирует развитие розовидного гребня, а доминантный ген P — гороховидного. Комбинация рецессивных аллелей этих генов rrpp вызывает развитие простого гребня. Ореховидный гребень развивается при наличии в генотипе обоих доминантных генов.

Наследование формы гребня у кур можно отнести к комплементарному взаимодействию неаллельных генов. Комплементарными, или дополнительными, считаются гены, которые при совместном действии в генотипе в гомо- или гетерозиготном состоянии обусловливают развитие нового признака. Действие же каждого из генов в отдельности воспроизводит признак одного из родителей.

Схема, иллюстрирующая взаимодействие неаллельных генов,
определяющих форму гребня у кур

Наследование генов, определяющих форму гребня у кур, полностью укладывается в схему дигибридного скрещивания, так как они ведут себя при распределении независимо. Отличие от обычного дигибридного скрещивания проявляется только на уровне фенотипа и сводится к следующему:

  1. Гибриды F 1 не похожи ни на одного из родителей и обладают новым признаком;
  2. В F 2 появляются два новых фенотипических класса, которые являются результатом взаимодействия либо доминантных (ореховидный гребень), либо рецессивных (простой гребень) аллелей двух независимых генов.

Механизм комплементарного взаимодействия подробно изучен на примере наследования окраски глаз у дрозофилы. Красная окраска глаз у мух дикого типа определяется одновременным синтезом двух пигментов — бурого и ярко-красного, каждый из которых контролируется доминантным геном. Мутации, затрагивающие структуру этих генов, блокируют синтез либо того, либо другого пигмента. Так, рецессивная мутация brown (ген находится во 2-й хромосоме) блокирует синтез ярко-красного пигмента, в связи с чем у гомозигот по этой мутации бурые глаза. Рецессивная мутация scarlet (ген располагается в 3-й хромосоме) нарушает синтез бурого пигмента, и поэтому гомозиготы stst имеют ярко-красные глаза. При одновременном присутствии в генотипе обоих мутантных генов в гомозиготном состоянии не вырабатываются оба пигмента и глаза у мух белые.

В описанных примерах комплементарного взаимодействия неаллельных генов формула расщепления по фенотипу в F 2 соответствует 9: 3: 3: 1. Такое расщепление наблюдается в том случае, если взаимодействующие гены по отдельности имеют неодинаковое фенотипическое проявление и оно не совпадает с фенотипом гомозиготного рецессива. Если это условие не соблюдается, в F 2 имеют место иные соотношения фенотипов.

Например, при скрещивании двух разновидностей фигурной тыквы со сферической формой плода гибриды первого поколения обладают новым признаком — плоскими или дисковидными плодами. При скрещивании гибридов между собой в F 2 наблюдается расщепление в соотношении 9 дисковидных: 6 сферических: 1 удлиненная.

Анализ схемы показывает, что в определении формы плода принимают участие два неаллельных гена с одинаковым фенотипическим проявлением (сферическая форма). Взаимодействие доминантных аллелей этих генов дает дисковидную форму, взаимодействие рецессивных аллелей — удлиненную.

Еще один пример комплементарного взаимодействия дает наследование окраски шерсти у мышей. Дикая серая окраска определяется взаимодействием двух доминантных генов. Ген А отвечает за присутствие пигмента, а ген В — за его неравномерное распределение. Если в генотипе присутствует только ген А (А-bb ), то мыши равномерно окрашены в черный цвет. Если присутствует только ген В (ааВ- ), то пигмент не вырабатывается и мыши оказываются неокрашенными, так же как и гомозиготный рецессив ааbb . Такое действие генов приводит к тому, что в F 2 расщепление по фенотипу соответствует формуле 9: 3: 4.


F 2

AB Ab aB ab
AB AABB
сер.
AABb
сер.
AaBB
сер.
AaBb
сер.
Ab AABb
сер.
AAbb
черн.
AaBb
сер.
Aabb
черн.
aB AaBB
сер.
AaBb
сер.
aaBB
бел.
aaBb
бел.
ab AaBb
сер.
Aabb
черн.
aaBb
бел.

aabb
бел.

F 2: 9 сер. : 3 черн. : 4 бел.

Комплементарное взаимодействие описано также при наследовании окраски цветов у душистого горошка. Большая часть сортов этого растения имеет пурпурные цветы с фиолетовыми крыльями, которые характерны для дикой сицилийской расы, но есть также сорта с белой окраской. Скрещивая растения с пурпурной окраской цветов с растениями с белыми цветами Бетсон и Пеннет установили, что пурпурная окраска цветов полностью доминирует над белой, и в F 2 наблюдается соотношение 3: 1. Но в одном случае от скрещивания двух белых растений получилось потомство, состоящее только из растений с окрашенными цветами. При самоопылении растений F 1 было получено потомство, состоящее из двух фенотипических классов: с окрашенными и неокрашенными цветами в соотношении 9/16: 7/16.

Полученные результаты объясняются комплементарным взаимодействием двух пар неаллельных генов, доминантные аллели которых (С и Р ) в отдельности не способны обеспечить развитие пурпурной окраски, так же как и их рецессивные аллели (ссрр ). Окраска проявляется только при наличии в генотипе обоих доминантных генов, взаимодействие которых обеспечивает синтез пигмента.


пурп.
F 2

CP Cp cP cp
CP CCPP
пурп.
CCPp
пурп.
CcPP
пурп.
CcPp
пурп.
Cp CCPp
пурп.
CCpp
бел.
CcPp
пурп.
Ccpp
бел.
cP CcPP
пурп.
CcPp
пурп.
ccPP
бел.
ccPp
бел.
cp CcPp
пурп.
Ccpp
бел.
ccPp
бел.
F 2: 9 пурп. : 7 бел.

В приведенном примере формула расщепления в F 2 — 9: 7 обусловлена отсутствием у доминантных аллелей обоих генов собственного фенотипического проявления. Однако такой же результат получается и в том случае, если взаимодействующие доминантные гены имеют одинаковое фенотипическое проявление. Например, при скрещивании двух сортов кукурузы с фиолетовой окраской зерновок в F 1 все гибриды имеют желтые зерновки, а в F 2 наблюдается расщепление 9/16 желт. : 7/16 фиол.

Эпистаз — другой тип неаллельного взаимодействия, при котором происходит подавление действия одного гена другим неаллельным ему геном. Ген, который препятствует проявлению другого гена, называется эпистатичным, или супрессором, а тот, чье действие подавляется, гипостатичным. В качестве эпистатичного гена может выступать как доминантный, так и рецессивный ген (соответственно доминантный и рецессивный эпистаз).

Примером доминантного эпистаза служит наследование окраски шерсти у лошадей и окраски плодов у тыквы. Схема наследования этих двух признаков абсолютно одинаковая.


F 2

CB Cb cB cb
CB CCBB
сер.
CCBB
сер.
CcBB
сер.
CcBb
сер.
Cb CCBb
сер.
CCbb
сер.
CcBb
сер.
Ccbb
сер.
cB CcBB
сер.
CcBb
сер.
ccBB
черн.
ccBb
черн.
cb CcBb
сер.
Ccbb
сер.
ccBb
черн.
ccbb
рыж.
F 2: 12 сер. : 3 черн. : 1 рыж.

Из схемы видно, что доминантный ген серой окраски С является эпистатичным по отношению к доминантному гену В , который обусловливает черную окраску. В присутствии гена С ген В своего действия не проявляет, и поэтому гибриды F 1 несут признак, определяемый эпистатичным геном. В F 2 класс с обоими доминантными генами сливается по фенотипу (серая окраска) с классом, у которого представлен только эпистатичный ген (12/16). Черная окраска проявляется у 3/16 гибридных потомков, в генотипе которых отсутствует эпистатичный ген. В случае гомозиготного рецессива отсутствие гена-супрессора позволяет проявиться рецессивному гену с, который вызывает развитие рыжей окраски.

Доминантный эпистаз описан также при наследовании окраски пера у кур. Белый цвет оперенья у кур породы леггорнов доминирует над окрашенным черных, рябых и других цветных пород. Однако белая окраска других пород (например, плимутроков) рецессивна по отношению к цветному оперению. Скрещивания между особями с доминантной белой окраской и особями с рецессивной белой окраской в F 1 дают белое потомство. В F 2 наблюдается расщепление в соотношении 13: 3.

Анализ схемы показывает, что в определении окраски пера у кур принимают участие две пары неаллельных генов. Доминантный ген одной пары (I ) является эпистатичным по отношению к доминантному гену другой пары, вызывающему развитие окраски (C ). В связи с этим окрашенное оперение имеют только те особи, в генотипе которых присутствует ген С , но отсутствует эпистатичный ген I . У рецессивных гомозигот ссii отсутствует эпистатичный ген, но у них нет гена, который обеспечивает выработку пигмента (C ), поэтому они имеют белую окраску.

В качестве примера рецессивного эпистаза можно рассмотреть ситуацию с геном альбинизма у животных (см. выше схему наследования окраски шерсти у мышей). Присутствие в генотипе двух аллелей гена альбинизма (аа ) не дает возможности проявиться доминантному гену окраски (B ) — генотипы ааВ- .

Полимерный тип взаимодействия был впервые установлен Г. Нильсеном-Эле при изучении наследования окраски зерна у пшеницы. При скрещивании краснозерного сорта пшеницы с белозерным в первом поколении гибриды были окрашенными, но окраска была розовой. Во втором поколении только 1/16 часть потомства имела красную окраску зерна и 1/16 — белую, у остальных окраска была промежуточной с разной степенью выраженности признака (от бледно-розовой до темно-розовой). Анализ расщепления в F 2 показал, что в определении окраски зерна участвуют две пары неаллельных генов, действие которых суммируется. Степень выраженности красной окраски зависит от количества доминантных генов в генотипе.

Полимерные гены принято обозначать одинаковыми буквами с добавлением индексов, в соответствии с числом неаллельных генов.

Действие доминантных генов в данном скрещивании является аддитивным, так как добавление любого из них усиливает развитие признака.


F 2

A 1 A 2 A 1 a 2 a 1 A 2 a 1 a 2
A 1 A 2 A 1 A 1 A 2 A 2
красн.
A 1 A 1 A 2 Aa 2
ярко-розов.
A 1 a 1 A 2 A 2
ярко-розов.
A 1 a 1 A 2 a 2
розов.
A 1 a 2 A 1 A 1 A 2 a 2
ярко-розов.
A 1 A 1 a 2 a 2
розов.
A 1 a 1 A 2 a 2
розов.
A 1 a 1 a 2 a 2
бледно-розов.
a 1 A 2 A 1 a 1 A 2 A 2
ярко-розов.
A 1 a 1 A 2 a 2
розов.
a 1 a 1 A 2 A 2
розов.
a 1 a 1 A 2 a 2
бледно-розов.
a 1 a 2 A 1 a 1 A 2 a 2
розов.
A 1 a 1 a 2 a 2
бледно-розов.
a 1 a 1 A 2 a 2
бледно-розов.

a 1 a 1 a 2 a 2
бел.

F 2: 15 окраш. : 1 бел.

Описанный тип полимерии, при котором степень развития признака зависит от дозы доминантного гена, называется кумулятивным. Такой характер наследования обычен для количественных признаков, к которым следует отнести и окраску, т.к. ее интенсивность обусловлена количеством вырабатываемого пигмента. Если не учитывать степень выраженности окраски, то соотношение окрашенных и неокрашенных растений в F 2 соответствует формуле 15: 1.

Однако в некоторых случаях полимерия не сопровождается кумулятивным эффектом. В качестве примера можно привести наследование формы семян у пастушьей сумки. Скрещивание двух рас, одна из которых имеет треугольные плоды, а другая яйцевидные дает в первом поколении гибриды с треугольной формой плода, а во втором поколении наблюдается расщепление по этим двум признакам в соотношении 15 треуг. : 1 яйцев.

Данный случай наследования отличается от предыдущего только на фенотипическом уровне: отсутствие кумулятивного эффекта при увеличении дозы доминантных генов обусловливает одинаковую выраженность признака (треугольная форма плода) независимо от их количества в генотипе.

К взаимодействию неаллельных генов относят также явление плейотропии — множественного действия гена, влияния его на развитие нескольких признаков. Плейотропное действие генов является результатом серьезного нарушения обмена веществ, обусловленного мутантной структурой данного гена.

Так, например, ирландские коровы породы декстер отличаются от близкой по происхождению породы керри укороченными ногами и головой, но одновременно лучшими мясными качествами и способностью к откорму. При скрещивании коров и быков породы декстер 25% телят имеют признаки породы керри, 50% сходны с породой декстер, а в остальных 25% случаев наблюдаются выкидыши уродливых бульдогообразных телят. Генетический анализ позволил установить, что причиной гибели части потомства является переход в гомозиготное состояние доминантной мутации, вызывающей недоразвитие гипофиза. В гетерозиготе этот ген приводит к появлению доминантных признаков коротконогости, короткоголовости и повышенной способности к отложению жира. В гомозиготе этот ген имеет летальный эффект, т.е. в отношении гибели потомства он ведет себя как рецессивный ген.

Летальный эффект при переходе в гомозиготное состояние характерен для многих плейотропных мутаций. Так, у лисиц доминантные гены, контролирующие платиновую и беломордую окраски меха, не оказывающие летального действия в гетерозиготе, вызывают гибель гомозиготных зародышей на ранней стадии развития. Аналогичная ситуация имеет место при наследовании серой окраски шерсти у овец породы ширази и недоразвития чешуи у зеркального карпа. Летальный эффект мутаций приводит к тому, что животные этих пород могут быть только гетерозиготными и при внутрипородных скрещиваниях дают расщепление в соотношении 2 мутанта: 1 норма.


F 1
F 1: 2 плат. : 1 черн.

Однако большинство летальных генов рецессивны, и гетерозиготные по ним особи имеют нормальный фенотип. О наличии у родителей таких генов можно судить по появлению в потомстве гомозиготных по ним уродов, абортусов и мертворожденных. Чаще всего подобное наблюдается в близкородственных скрещиваниях, где родители обладают сходными генотипами, и шансы перехода вредных мутаций в гомозиготное состояние достаточно высоки.

Плейотропные гены с летальным эффектом есть у дрозофилы. Так, доминантные гены Curly — загнутые вверх крылья, Star — звездчатые глаза, Notch — зазубренный край крыла и ряд других в гомозиготном состоянии вызывают гибель мух на ранних стадиях развития.

Известная рецессивная мутация white , впервые обнаруженная и изученная Т. Морганом, также имеет плейотропный эффект. В гомозиготном состоянии этот ген блокирует синтез глазных пигментов (белые глаза), снижает жизнеспособность и плодовитость мух и видоизменяет форму семенников у самцов.

У человека примером плейотропии служит болезнь Марфана (синдром паучьих пальцев, или арахнодактилия), которая вызывается доминантным геном, вызывающим усиленный рост пальцев. Одновременно он определяет аномалии хрусталика глаза и порок сердца. Болезнь протекает на фоне повышения интеллекта, в связи с чем ее называют болезнью великих людей. Ею страдали А. Линкольн, Н. Паганини.

Плейотропный эффект гена, по всей видимости, лежит в основе коррелятивной изменчивости, при которой изменение одного признака влечет за собой изменение других.

К взаимодействию неаллельных генов следует отнести также влияние генов-модификаторов, которые ослабляют или усиливают функцию основного структурного гена, контролирующего развитие признака. У дрозофилы известны гены-модификаторы, модифицирующие процесс жилкования крыльев. Известно не менее трех генов-модификаторов, влияющих на количество красного пигмента в волосе крупного рогатого скота, в результате чего окраска шерсти у разных пород колеблется от вишневой до палевой. У человека гены-модификаторы изменяют окраску глаз, усиливая или ослабляя ее интенсивность. Их действием объясняется разная окраска глаз у одного человека.

Существование явления взаимодействия генов привело к появлению таких понятий, как “генотипическая среда” и “генный баланс”. Под генотипической средой подразумевается то окружение, в которое попадает вновь возникающая мутация, т.е. весь комплекс генов, имеющихся в данном генотипе. Понятие “генный баланс” касается соотношения и взаимодействия между собой генов, влияющих на развитие признака. Обычно гены обозначают названием признака, возникающего при мутации. На самом же деле проявление этого признака часто является результатом нарушения функции гена под влиянием других генов (супрессоров, модификаторов и др.). Чем сложнее генетический контроль признака, чем больше генов участвуют в его развитии, тем выше наследственная изменчивость, так как мутация любого гена нарушает генный баланс и приводит к изменению признака. Следовательно, для нормального развития особи необходимо не только присутствие генов в генотипе, но и осуществление всего комплекса межаллельных и неаллельных взаимодействий.

Если несколько генов определяют одно свойство организма (окраску цветка, длину шерсти и др.), то они взаимодействуют друг с другом. При этом в потомстве дигетерозиготы может наблюдаться необычное расщепление - 9:3:4; 9:7; 9:6:1; 13:3; 12:3:1; 15:1. Генетический анализ показывает, что необычные расщепления по фенотипу в F 2 представляют видоизменение общей менделевской формулы 9:3:3:1. Известны случаи вза­имодействия трех и большего числа генов с изменением обыч­ных формул расщепления.

Наиболее часто встречаются 3 формы взаимодействия неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.

Комплементарность - явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.

Эпистаз - явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).

Полимерия - явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствуют в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).

В противоположность полимерии наблюдается такое явление, как плейотропия - множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

Комплементарность. Комплементарными или дополнитель­ными называют такие доминантные гены, которые при совместном нахождении в генотипе (А-В-) обусловливают развитие нового признака по сравнению с действием каждого гена, в отдельности (A-bb или ааВ-).

Расщепление 9:3:3:1. Так, у дрозофилы встречается коричневая и ярко-красная окраска глаз. Обе эти окраски ре­цессивны к красной окраске (дикий тип). При скрещивании мух с коричневыми и ярко-красными глазами гибриды F 1 оказы­ваются красноглазыми, а в F 2 наблюдается расщепление на 4 фенотипических класса в отношении 9/16 красные: 3/16- ярко-красные: 3/16 коричневые и 1/16 белые (рис. 2).

Отличие исходных форм по одной паре признаков могло бы свидетельствовать о моногенных различиях между ними. Од­нако в F 1 вместо доминирования одного из признаков появ­ляется новое качество - красная окраска, а в F 2 осуще­ствляется дигибридное расщепление с тем лишь отличием от менделевского, что оно идет по одному, а не по двум свойствам (только окраска глаз). При этом здесь проявляется еще один новый признак - белый цвет глаз. Таким образом, генетический анализ свидетельствует о том, что в этом скрещивании участвуют не одна, а две пары генов.

Рисунок 2. Наследование окраски глаз у дрозофилы (комплементарность). Окраска глаз: а -ярко-красная; в -коричневая.

Мы можем сделать вывод, что гены А и В вместе определяют красную окраску глаз дикого типа, а - ярко-красную, в - ко­ричневую. Тогда генотип мух с коричневыми глазами можно обозначить AAbb, с ярко-красными - ааВВ, генотип красногла­зых гибридов - АаВb и белоглазых мух aabb. Фенотипические радикалы полученных в F 2 классов могут быть представлены как 9 А-В-, 3 ааВ-, 3 A-bb, 1 aabb.

Биохимический анализ глазных пигментов показал, что крас­ная окраска глаз обеспечивается тремя видами пигментов: ярко-красным, коричневым и желтым.

Рецессивный ген а блокирует образование коричневого пигмента, вследствие чего разви­ваются ярко-красные глаза, другой рецессивный ген - b блоки­рует одновременно образование красного и желтого пигментов, и поэтому образуется только коричневый пигмент. В F 1 объеди­няются доминантные аллели этих генов, и поэтому синтези­руются все пигменты, дающие в совокупности красную окраску глаз. Белоглазые мухи, появляющиеся в F 2 , являются результа­том одновременного блокирования синтеза всех трех пигментов.

Аналогичное наследование встречается и у растений. На­пример, окраска плодов у томатов (Lycopersicon esculeritum) обусловливается каротиновыми пигментами, имеющими огром­ное значение в синтезе витаминов. Генетический анализ показы­вает, что красная окраска плодов определяется взаимодей­ствием комплементарных доминантных генов R и Т, оранжевые плоды образуются на растениях с генотипом R-tt, желтые - с генотипом rrТ-, промежуточные желто-оранжевые - rrtt. Здесь также расщепление в F 2 соответствует генетической формуле дигибридного скрещивания 9:3:3: 1.

Таким образом, в случае, когда каждый из двух рецес­сивных неаллеальных генов проявляет самостоятельный фенотипический эффект, расщепление в F 2 по фенотипу соответствует менделевскому отношению 9:3:3:1, так как каждый из четырех классов имеет свой особый фенотип.

Расщепление 9:7 . Если же рецессивные аллели дают одинаковый фенотипический эффект, характер расщепления меняется. Например, у белого клевера (Trifolium repens) имеются формы с высоким и низким содержанием цианида. При скрещивании их в F 1 доминирует первое свойство, а в F 2 наб­людается расщепление, близкое к отношению 3:1. Следова­тельно, эти альтернативные признаки определяются одной парой аллелей. Но иногда при скрещивании двух растений клевера с низким содержанием цианида гибриды F 1 имеют много циа­нида, а в F 2 расщепление оказывается близким к отношению 9/16 с высоким содержанием цианида и 7/16 - с низким.

Чтобы выяснить, укладывается ли это расщепление в схему дигибридного менделевского расщепления, представим, что у каждой исходной расы клевера имеется в гомозиготном состоянии лишь по одной из доминантных аллелей (LLhh или llHH), которые при взаимодействии определяют развитие циа­нида. Поскольку у гибрида первого поколения F 1: присутствуют доминантные аллели обоих генов L-H-, в его листьях будет много цианида. В F 2: происходит расщепление в отношении 9/16 L-H-: 3/16 L-hh: 3/16 llН-: 1/16 llhh. Каждый из доминантных генов самостоятельно не может обусловить выработку большого количества цианида, поэтому у растений с генотипами L-hh и llН - мало цианида, и в F 2 наблюдается расщепление по фено­типу в отношении 9: 7.

Генетический анализ нашел подтверждение в биохимическом анализе. Оказалось, что цианид в листьях клевера обра­зуется из глюкозида линамарина под действием фермента линамаразы. Химический анализ листьев клевера разных генотипов проливает свет на характер взаимодействия этих двух пар ге­нов. Экстракт растений L-H- в норме содержит цианид. Дли того чтобы цианид образовался в листьях растений L-hh, необходимо добавить линамаразу, а в 11Н- линамарин. В растениях же llhh при добавлении любого компонента цианид не образуется. Следовательно, мы можем сделать вывод, что ген L обеспечивает образование линамарина, а ген H вырабаты­вает фермент линамаразу, превращающий линамарин в цианид. Переход гена L в рецессивное состояние l прерывает реакцию образования линамарина, а ген h блокирует образование фер­мента. Таким образом, в данном случае совместный генетиче­ский и биохимический анализы дают представление о меха­низме взаимодействия генов (табл. 2).

Таблица 2

Образование цианида экстрактами растений клевера разных генотипов

Подобный тип взаимодействия генов, дающий в F 2 расщеп­ление 9:7, найден у многих растений, животных и человека. Так, например, наследуется пурпурная и белая окраска цветка у душистого горошка (Lathyrus odoratus), желтая и белая окраска коконов у шелкопряда, нормальный слух и глухота у человека и т. п.

Расщепление в F 2 по фенотипу 9: 7 есть видоизменение рас­щепления 9:3:3:1, определяемое тем, что и доминантные и рецессивные гены не имеют самостоятельного фенотипического проявления.

Расщепление 9:3:4. До сих пор были рассмотрены примеры комплементарного взаимодействия, при котором каж­дый из доминантных генов в отдельности не обладал способно­стью вызвать развитие признака. Известны, однако, случаи, когда оба доминантных комплементарных гена характери­зуются самостоятельным проявлением. В соответствии с этим меняется и характер расщепления в F 2 . Рассмотрим наследова­ние трех типов окраски шерсти у кроликов (Lepus cuninculus) - дикой рыжевато-серой (агути), черной и белой. Окраска дикого типа зависит от наличия гена, распределяющего пигмент по длине волоса. Каждая шерстинка у кроликов агути имеет посе­редине желтое кольцо, а в основании и на конце - черный пиг­мент. Такое зонарное распределение пигментов и создает окра­ску агути, свойственную всем диким грызунам.

У черных кроликов шерстинки по всей длине окрашены равномерно в черный цвет. Белые кролики с красной радужной оболочкой глаз (альбиносы) вовсе лишены пигмента.

Рисунок 3. Наследование окраски шер­сти у кроликов (комплементарность). Окрас шерсти: А – окрашенность; а - альби­низм; В - зонарная (агути); b - черная.

При скрещивании черных кроликов с белыми все гибриды оказываются агути, а в F 2 наблюдается расщепление в отно­шении 9/16 агути: 3/16 черных: 4/16 белых (рис. 3). Если прове­сти анализ этого скрещивания в начале по наличию и отсут­ствию пигмента, не обращая внимания на его качество, то мо­жно прийти к выводу, что окрашенность доминирует над неокрашенностью, а в F 2 наблюдается расщепление на 12 окра­шенных (9 + 3) и 4 белых, т. е. 3: 1. В то же время в F 2 осуще­ствляется расщепление на 9 агути и 3 черных (3: 1). Гены мо­жно обозначить следующим образом: А - наличие окраски, а - отсутствие ее, В - окраска агути, b - черная. Тогда исход­ные кролики-альбиносы являются, очевидно, гомозиготными по рецессивному гену отсутствия окраски и доминантному гену агути (ааВВ), а черные кролики - гомозиготными по доминант­ному гену наличия окраски и рецессивному гену черной окраски (ААbb). У гибридов F 1 (АаВb) вследствие взаимодействия до­минантных аллелей обоих генов развивается окраска типа агути. Такая же окраска характерна и для 9/16 особей в F 2 с геноти­пом А-В-. Черными в F 2 оказываются кролики, имеющие генотип A-bb, а белыми - все остальные (ааВ- и aabb) в силу отсут­ствия у них гена А, определяющего образование пигмента. Ген В в отсутствии гена А не проявляется.

Подобный тип наследования широко распространен в при­роде. Например, у ржи (Secale cereale) скрещивание белозер­ных растений с желтозерными дает в F 1 только зеленую окраску зерна, а в F 2 расщепление в отношении 9 зеленых: 3 желтых: 4 белых . Анало­гично наследуется белая, красная и чалая масти у крупного рогатого скота и т. п.

Расщепление 9:6:1. В ряде случаев комплементарные гены, способные к самостоятельному проявле­нию, при отсутствии дополнительного гена могут давать каждый в отдельности сходный фенотипический эффект. Характер рас­щепления дигетерозиготы в F 2 при этом также изменяется. Так, у тыквы (Cucurbita pepo) имеются сорта с разной формой плода: сферической, дисковидной и удлиненной (рис. 4). Сферическая форма плода является рецессивной но отношению к дисковид­ной. От скрещивания растений с плодами сферической формы, но имеющих разное происхождение, получаются гибридные растения, дающие дисковидные плоды. В потомстве у этих рас­тений в F2 появляются три фенотипических класса в отноше­нии: 9/16 с дисковидными плодами, 6/16 - со сферическими и 1/16 - с удлиненными. Нетрудно понять, что и здесь имеет место взаимодействие двух генов, определяющих форму плода. Каж­дый из доминантных комплементарных генов обусловливает развитие плодов сферической формы, а их взаимодействие приводит к образованию дисковидных плодов. Взаимодействие рецессивных аллелей этих генов определяет развитие плодов удлиненной формы. Таким образом, и здесь видоизменяется обычное дигибридное расщепление .

Подобный тип взаимодействия на­блюдается в наследовании окраски щетины у свиней (Sus scrofa). При скрещивании двух разных пород с пе­сочной окраской в F 1 появляется красная окраска, а в F 2 рас­щепление на 9 красных, 6 песочных и 1 белую.

1/16

Рисунок 4. Наследование формы плода у тыквы (комплементарность).

Рассматривая примеры комплементарного действия генов, можно убедиться, что оно иногда приводит к развитию у гибри­дов признаков, несвойственных исходным формам, т. е. к но­вообразованиям. Зачастую эти «новообразования» являются признаками, свойственными диким предкам данных видов, напри­мер окраска агути у кроликов и т. п. У диких предков домаш­них животных и растений доминантные гены комплементарного действия поддерживались естественным отбором вместе в од­ном генотипе. При одомашнивании с помощью скрещиваний и искусственного отбора комплементарные гены разобщились. Генотип АаВb разлагался селекционерами на генотипы AAbb и ааВВ. Поэтому при скрещивании и наблюдается иногда как бы возврат к признакам диких предков.

Эпистаз. При доминировании действие одной аллели подав­ляются другой аллелью этого же гена: А>а, В>b и т. д. Но существует взаимодействие, при котором один ген подавляет действие другого, например А>В или B>A, а>В или b>А и т. д.

Такое явление называется эпистазом. Гены, подавляющие действие других генов, называются супрессорами или ингиби­торами. Они могут быть как доминантными, так и рецессив­ными. Гены-супрессоры известны у животных, растений и ми­кроорганизмов. Обычно они обозначаются I или S.

Эпистаз принято делить на два типа: доминантный и рецес­сивный.

Под доминантным эпистазом понимают подавление одним доминантным геном действия другого гена.

Расщепление 13:3. Из многих примеров доминантного эпистаза приведем лишь некоторые. Так, у льна (Linura usitatissimum) наряду с формами, имеющими нормальные лепе­стки, встречаются растения с гофрированными лепестками. При скрещивании двух форм с нормальными лепестками, имеющих разное происхождение, в F 1 все гибриды имеют нормальные лепестки, а в F 2 получается расщепление: 13/16 растений с нор­мальными лепестками и 3/16 - с гофрированными. Характер расщепления свидетельствует о том, что форма лепестков оп­ределяется двумя парами генов. В таком случае одно из исход­ных растений должно нести в скрытом состоянии ген гофрированности лепестков, действие которого подавлено ингибитором. Следовательно, у растений этого генотипа нормальная форма лепестков определяется не особыми генами (нормальной формы лепестков), а геном - подавителем гофрированности.

Обозначим ген гофрированности лепестков - А, нормальной формы - а (это основные гены формы лепестков), ингибитор гофрированности - I, ген отсутствия подавления - i. Тогда ис­ходные формы с нормальными лепестками будут иметь гено­типы IIАА и iiaа, гибриды F 1 IiАа - также нормальные, а рас­щепление в F 2 13/16 нормальных: 3/16 гофрированных можно представить как 9 (I-A-)+3 (I-аа) +1 (iiaa) = 13 нормальных и 3 iiA - гофрированных. Таким образом, подавление действия доминантного гена гофрированности лепестков доминантной аллелью другого гена (подавителя) обусловливает в F 2 рас­щепление по фенотипу в отношении 13:3 [(9 + 3+1): 3].

Этот тип взаимодействия широко распространен в природе и наблюдается в наследовании окрашенности и неокрашенности зерен у кукурузы и оперения у кур и т. п. На рисунке 5 изобра­жено наследование окраски луковицы у лука Allium сера.

Рисунок 5. Наследование окраски лукови­цы у Allium сера (эпистаз): А - наличие окраски; а - отсут­ствие окраски; I - подавитель ок­раски; i - окраска не подавляется.

Расщепление 12:3:1. Доминантный эпистаз может давать и другое расщепление в F 2 по фенотипу, а именно 12: 3: 1 [(9 + 3) : 3: 1]. В этом случае, в отличие от предыдущего, форма, гомозиготная по обоим рецессивным генам, имеет спе­цифический фенотип.

Например, некоторые собаки (Canis familiaris) с белой окраской шерсти при скрещивании с собаками, имеющими ко­ричневую окраску, дают в F 1 щенков с белой окраской, а в F 2 расщепление на 12/16 белых, 3/16 чер­ных и 1/16 коричневых (рис. 6). Если проанализировать это скрещи­вание отдельно по свойству окрашенности-неокрашенности и черно-коричневой окраске, то можно убедиться, что отсутствие окраски в F 1 доминирует над ее наличием, а в F 2 наблюдается расщепление 12:4, или 3:1. Расщепление на 3 черных и 1 коричневую свидетельствует о том, что черная окраска опреде­ляется доминантным геном, а ко­ричневая - рецессивным. Теперь можно обозначить ингибитор ок­раски - I, его отсутствие - i, чер­ную окраску - А, коричневую - а. Тогда легко представить генотипы исходных форм и гибридов. Подоб­ный тип эпистаза встречается в на­следовании окраски плодов у тык­вы, окраски шерсти у овец (Ovis aries) и во многих других случаях. Таким образом, гены-подавители обычно не определяют сами какой-либо качественной реакции в разви­тии данного признака, а лишь по­давляют действие других генов. Но в некоторых случаях это не так. Например, у хлопка (Gossypium) по окраске волокон в F 2 наблюдается расщепление на 12 коричневых: 3 зеленых: 1 белую. Однако анализ коричневых волокон в ультрафиолето­вых лучах позволяет выделить два типа коробочек: 3, имеющих волокна только с коричневым пигментом, и 9 - с коричневым и зеленым. У растений последнего типа зеленая окраска опти­чески не видна, так как коричневый пигмент ее как бы подав­ляет, т. е. является ингибитором.

Рисунок 6. Наследование окраски шерсти у собак (эпистаз): А-черная окраска; а - ко­ричневая; I - подавляет ок­раску; i - не подавляет.

Под рецессивным эпистазом понимают такой тип взаимо­действия, когда рецессивная аллель одного гена, будучи в гомо­зиготном состоянии, не дает возможности проявиться доми­нантной или рецессивной аллели другого гена: аa>B- или aa>bb.

Расщепление 9:3:4 приводилось как пример комплемен­тарного взаимодействия генов. Но эти же случаи можно рас­сматривать и как рецессивный эпистаз.

При скрещивании черных кроликов (AAbb) с белыми (ааВВ) все гибриды (АаВb) имеют окраску типа агути, а в F 2 9/16 крольчат оказываются агути (А-В-), 3/16 черных (A-bb) и 4/16 белых (ааВ- и aabb). Эти результаты можно объяснить, предположив, что имеет место рецессивный эпистаз типа аа>В- и aa>bb. При этом кролики генотипа ааВ- и aabb оказы­ваются белыми потому, что ген а в гомозиготном состоя­нии, блокируя образование пигмента, препятствует тем самым проявлению гена - распределителя пигмента В и гена черной окраски b.

Кроме описанных случаев одинарного рецессивного эпитаза, существуют и такие, когда рецессивная аллель каждого гена в гомозиготном состоянии одновременно реципрокно подавляет действие доминантной аллели комплементарного гена, т. е. аа эпистатирует над В-, bb над А-. Такое взаимодействие двух рецессивных подавителей называют двойным рецессивным эпи­стазом. В дигибридном скрещивании расщепление по фено­типу - 9: 7, как и в случае комплементарного взаимодей­ствия генов.

Следовательно, одно и то же расщепление можно трактовать как результат и комплементарного взаимодействия, и эпистаза. Один генетический анализ наследования при взаимодействии генов без знания биохимии и физиологии развития признака в онтогенезе не может раскрыть природы этого взаимодействия. Но без генетического анализа нельзя понять механизм наследственной детерминации развития этих признаков.

Полимерия. Рассмотренные до сих пор типы взаимодействия сенов относились к альтернативным, т. е. качественно разли­чающимся, признакам.

Такие свойства организмов, как, например, темп роста и вес животного, длина стебля растения и т. п., нельзя разложить на четкие фенотипические классы; их необходимо измерять, взве­шивать, подсчитывать, т.е. оценивать количественно. Подобные признаки обычно называют количественными или мерными признаками. Если расположить, например, овец одной породы в порядке возрастания их веса, то между самым мелким и круп­ным животными будет серия незаметных переходов, образую­щих непрерывный ряд.

Наследование таких признаков может происходить по-разному. При одном варианте, признак формируется под действием аллелей одного гена, который может быть представлен разным числом их в генотипе. Например, содержание витамина А в эндосперме зерна кукурузы зависит от количества доминантных аллелей гена у . Как известно, клетки эндосперма содержат три набора хромосом. Следовательно, путем скрещивания можно получить четыре различных по генотипу эндосперма кукурузы, содержащих раз­ное количество доминантных и рецессивных аллелей у . Количе­ство витамина А (в единицах активности) при разных дозах одного и того же гена оказывается следующим:

В эндосперме генотипа у у у. . . 0,05

» » » Y у у. . . 2,25

» » » Y Y у. . . 5,00

» » » Y У У. . . 7,50

Как видно из приведенных данных, действие одной дозы доминантного гена Y соответствует примерно 2,25 - 2,50 единиц активности витамина А. С увеличением дозы гена его действие суммируется, или кумулируется.

Такой тип действия гена называют кумулятивным или адди­тивным, т. е. суммирующимся .

При другом варианте формирование количественного признака у организма, определяется взаимодействием многих доминант­ных генов , действующих на один и тот же признак или свой­ство. В этом случае количе­ственные признаки, могут образовывать по своему проявлению непре­рывный ряд. При этом, количественно варьирующий признак у разных особей одного и того же поколения будет определяться разным числом доминантных генов в генотипе. Так, при скре­щивании рас пшениц (Triticum) с красными и белыми (неокра­шенными) зернами шведский генетик Г. Нильсон-Эле в 1908 г. обнаружил в F 2 обычное моногибридное расщепление в отно­шении 3:1.

Однако при скрещивании некоторых других линий пшениц, различающихся по таким же признакам, в F 2 наблюдается рас­щепление в отношении 15/16 окрашенных: 1/16 белых. Окраска зерен из первой группы варьирует от темно- до бледно-красных (рис. 7).

Генетический анализ растений из семян F 2 разных окрасок показал, что растения, выращенные из белых зерен и из зерен с наиболее темной (красной) окраской, в дальней­шем не дают расщепления. Из зерен с окраской промежуточ­ного типа развились растения, давшие в последующих поколениях расщепление по окраске зерна. Анализ характера расщеп­ления позволил установить, что в данном случае красную окраску зерен определяют доминантные аллели двух разных генов, а сочетание их рецессивных аллелей в гомозиготном со­стоянии определяет отсутствие окраски. Интенсивность окраски зерен зависит от числа доминантных генов в генотипе.

Рисунок 7. Наследование окраски зерна у пшеницы (полимерия)

Гены такого типа, одинаково влияющие на развитие одного признака, были названы генами с однозначным действием или полимерными. Такое же название получили и сами признаки. Поскольку эти гены однозначно влияют на один и тот же при­знак, было принято обозначать их одной латинской буквой с указанием номера разных генов: А 1 , А 2 , A 3 и т. д. Этот тип взаимодействия генов получил название полимерии.

Следовательно, исходные родительские формы, давшие рас­щепление в F 2: 15:1, имели генотипы А 1 А 1 А 2 А 2 и а 1 а 1 а 2 а 2 . Гиб­рид F 1: обладал генотипом A l a 1 A 2 a 2 , а в F 2 появились зерна с разным числом доминантных генов. Наличие всех четырех доминантных аллелей A 1 A 1 A 2 A 2 у 1/16 растений определяет са­мую интенсивную окраску зерна; 4/16 всех зерен имели три доминантных аллели (типа A 1 A 1 A 2 a 2), 6/16 - две (типа A 1 a 1 A 2 a 2), 4/16 - одну (типа A 1 a 1 a 2 a 2), все эти генотипы опреде­ляли различные промежуточные окраски, переходные между интенсивно-красной и белой. Гомозиготной по обоим рецессив­ным генам (a 1 a 1 a 2 a 2) являлась 1/16 всех зерен, и эти зерна ока­зались неокрашенными.

Нетрудно заметить, что частоты пяти перечисленных генотипических классов F 2 распределяются в ряде: 1+4 + 6 + 4+1 = 16, который отображает изменчивость признака окраски зерна пшеницы в зависимости от числа доминантных аллелей в гено­типе. Аналогичный тип наследования известен для некото­рых видов окраски зерен кукурузы, колосковой чешуи у овса и т. п.

При накоплении доминантных полимерных генов их действие суммируется, т. е. они имеют кумулятивный эффект, поэтому взаимодействие такого типа называют кумулятивной поли­мерией .

Очевидно, что если у гибрида F 1 число таких генов в гетеро­зиготном состоянии оказывается не два, а три А 1 а 1 А 2 a 2 А 3 а 3 или более, то число комбинаций генотипов в F 2 увеличивается. Этот ряд генотипов можно представить в виде биноминальной кривой изменчивости данного признака.

В опыте Нильсона-Эле тригибридное расщепление в F 2 по генам окраски зерен пшеницы давало соотношение 63 красных к 1 неокрашенному. В F 2: наблюдались все переходы от интен­сивной окраски зерен с генотипом A 1 A 1 A 2 A 2 A 3 A 3 до полного ее отсутствия у a 1 a 1 a 2 a 2 a 3 a 3 . При этом частоты генотипов с разным количеством доминантных генов распределялись в следующий ряд: 1+6+15 + 20+15 + 6+1=64. На рисунке 8 приведены гистограммы распределения частот генотипов с разным числом до­минантных генов кумулятивного действия в моно-, ди-, три- и по­лигибридном скрещиваниях. Из этого сопоставления видно, что, чем большее число доминантных генов определяет данный при­знак, тем больше амплитуда из­менчивости и тем более плавны переходы между различными группами особей.

Полимерно наследуется, на­пример, пигментация кожи у че­ловека. При бракосочетании негра и белой женщины рождаются дети с промежуточным цветом кожи (мулаты). У отца и матери мулатов могут родиться дети всех типов кожи с окраской разных оттенков, от черной до белой, что определяется комбинацией двух пар полимерных генов.

Рисунок 8. Распределение частот генотипов в F 2 в случае кумулятивной полимерии.

Таким образом, при изучении наследования перечисленных вы­ше признаков в F 2 не наблю­дается расщепления на определенные, легко отличимые фенотипические классы, как это имеет место в случае альтернативных признаков: гладкая или морщи­нистая форма семян у гороха и т. д. Полимерные признаки, как правило, необходимо измерять или подсчитывать. Поэтому, в отличие от альтернативно наследующихся, так называемых качественных признаков, их называют количественными при­знаками. При наследовании таких признаков потомство гиб­рида по фенотипическому проявлению образует непрерыв­ный ряд.

В принципе деление признаков на количественные и каче­ственные условно. Как те, так и другие признаки можно и должно измерять при изучении их наследования, поскольку без количественной оценки любого явления природы не может быть объективного его анализа.

В качестве примера приведем результаты скрещивания двух форм кукурузы - длиннопочатковой и короткопочатковой. Как видно из рисунка 9, початки по их длине у исходных линий кукурузы № 60 (короткопочатковая) и № 54 (длиннопочатковая), а также у гибридов первого и второго поколений распре­деляются с определенной закономерностью. Нетрудно заметить, что эти две линии сильно различаются между собой, но в пре­делах каждой из них длина початков колеблется незначительно. Это указывает на то, что они наследственно сравнительно одно­родны. Захождения в размерах початков родительских форм нет. У гибридных растений F 1 длина початков оказывается про­межуточной, с небольшой изменчивостью. В F 2 размах изменчи­вости значительно увеличивается. Следовательно, непрерывный ряд изменений по длине початка кукурузы можно представить как ряд генотипов с различным числом доминантных генов, обусловливающих данный количественный признак.

Тот факт, что при небольшом числе исследованных растений второго поколения у некоторых из них воспроизводится длина початков, свойственная родительским формам, может указывать на участие небольшого числа полимерных генов в определении длины початка у скрещиваемых форм. Такое предположение вытекает из известной нам формулы 4 n , определяющей число возможных комбинаций гамет, образующих зиготы в F 2 , в зави­симости от числа пар генов, по которым различались исходные родительские формы. Появление в опыте среди 221 растения F 2 форм, сходных с родительскими, указывает на то, что число независимо наследующихся генов, определяющих длину по­чатка, не должно превышать трех (4 3 = 64) или четырех (4 4 = 256). Большая изменчивость признака указывает на его сложную генетическую обусловленность, а меньшая - на мень­шее число факторов, его определяющих.

Приведенные примеры анализа наследования количествен­ных признаков иллюстрируют лишь один из возможных путей их изучения. Другой путь - применение математических мето­дов. Анализ наследования количественных признаков и действия полимерных генов чрезвычайно сложен.

Рисунок 9. Наследование длины початков (в см) у кукурузы (полимерия).

Изучение полимерных генов имеет не только теоретический, но и большой практический интерес. Хозяйственно ценные при­знаки у животных и растений, такие, как жирномолочность ко­ров, яйценоскость кур, длина колоса пшеницы, содержание сахара в корнеплодах свеклы и многие другие, наследуются по типу полимерии.

Проявление полимерных признаков в очень большой степени определяется условиями развития организма. Так, молочная продуктивность коров, длина шерсти овец, скорость роста сви­ней во многом зависят от условий кормления и содержания животных. Величина клубней картофеля, початков кукурузы или длина стебля льна определяются в значительной мере ка­чеством вносимых удобрений, количеством осадков и т. п.

Некумулятивная полимерия. Полимерные гены с однозначным действием могут определять и качественные, т. е. альтернативные, признаки. Примером может служить наследование оперенности ног у кур (Gallus gallus). От скрещи­вания пород, имеющих оперенные и неоперенные ноги, в F 1 по­являются цыплята с оперенными ногами. Во втором поколении происходит расщепление по фенотипу,в отношении 15/16 с опе­ренными ногами и 1/16 с неоперенными, т. е. наблюдается два фенотипичееких класса (рис. 10),

Очевидно, порода с оперенными ногами гомозиготна по двум парам однозначных доминантных генов (A 1 A 1 A 2 A 2), а с неоперенными - имеет генотип а 1 а 1 а 2 а 2 . Сочетание гамет при оплодотворении дает гибриды с генотипом А 1 а 1 А 2 а 2 . Доми­нантные аллели каждого из двух генов действуют качественно однозначно, т. е. определяют оперенность ног. Поэтому гено­типы А 1 -А 2 - (9/16), A 1 -a 2 a 2 (3/16) и a 1 a 1 A 2 -(3/16) соответствуют фенотипу с оперенными ногами, а генотип а 1 а 1 а 2 а 2 (1/16) с неопе­ренными.

Таким же образом осуществляется наследование формы стручка у пастушьей сумки (Capsella bursa pastoris). При скре­щивании расы, имеющей яйцевидные стручки, с расой, у кото­рой плоды треугольной формы, в F 1 все растения имеют тре­угольные стручки, а в F 2 наблюдается расщепление в отноше­нии 15: 1 [(9+3 + 3) : 1].

В двух приведенных примерах наличие в генотипе разного количества доминантных полимерных генов однозначного дей­ствия не изменяет выраженности признака. Достаточно одной доминантной аллели любого из двух генов, чтобы вызвать раз­витие признака. Поэтому такой тип взаимодействия генов был назван некумулятивной полимерией .

Рисунок 10. Наследование оперенности ног у кур (полимерия): А - оперенные ноги, а - неоперенные.

Все рассмотренные типы взаимодействия генов: комплементарное, эпистатическое и полимерное видоизменяют классическую формулу расщепления по фенотипу (9: 3: 3: 1), установленную Менделем для дигибридного скрещивания. В таблице 6 приведены некоторые типы расщепления по фенотипу для дигибридного скрещивания, при этом все они показаны с точки зрения доминантного и рецессивного эпистаза.

Таблица 6

Соотношение фенотипичееких классов расщепления в потомстве дигетерозиготы при некоторых типах взаимодействия генов

Все приведенные типы расщепления по фенотипу столь же закономерны, как 9:3:3: 1; они являются не следствием нару­шения генетического механизма расщепления, а результатом взаимодействия генов между собой в индивидуальном развитии.

Модифицирующее действие генов. При изучении явления взаимодействия были открыты гены основного действия, т. е. такие, которые определяют развитие признака или свойства, например выработку пигментов, форму цветка и т. п., и такие, которые сами по себе не определяют какую-либо качественную реакцию или признак, а лишь усиливают или ослабляют про­явление действия основного гена. Это гены-модификаторы, а их действие - модифицирующее.

Одни из генов-модификаторов могут усиливать эффект основного гена, другие ослаблять. Например, у крупного рога­того скота пегая окраска шерстного покрова определяется ре­цессивным геном и двумя модификаторами, ослабляющими или усиливающими эффект основного гена пегости (рис. 11). Неза­висимо от наличия или отсутствия модификаторов, при скре­щивании животного, имеющего сплошную окраску, с пегим в F 1 будет доминировать сплошная окраска, а в F 2 - осуществляться расщепление 3:1. Действие модификаторов обнаруживается в присутствии гена пегости и проявляется в увеличении или уменьшении непигментированных участков шерстного покрова.

Рисунок 11. Модификация пегости у крупного рогатого скота: 1-усиленная пегость; 2 - пегость; 3 - ослабленная пегость.

Эти гены могут располагаться в разных локусах гомологичных хромосом или в негомологичных хромосомах, обычно отвечают за развитие разных признаков.

Комплементарность (лат. комплементум - дополнение) - присутствие в одном генотипе двух доминантных (рецессивных) генов, которые дополняют действие друг друга, и признак формируется лишь при одновременном действии обоих генов.

Пример: развитие слуха у человека. Для нормального слуха в генотипе человека должны присутствовать доминантные гены из разных аллельных пар -D и E. Ген D отвечает за нормальное развитие улитки, а ген E - за развитие слухового нерва. У рецессивных гомозигот (dd) будет недоразвита улитка, а при генотипе (ее) недоразвит слуховой нерв. Люди с генотипами D..ee, ddE.. и ddee будут глухими.

Эпистаз - такой вид взаимодействия, при котором доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары. Соответственно эпистаз может быть как доминантным таки рецессивным. Это явление противоположно комплементарности. Подавляющий ген называется супрессором, ингибитором, эпистатичным. Подавляемый ген - гипостатичным. У человека описан «бомбейский феномен» в наследовании групп крови по АВО системе. У женщины получившей от матери аллель J B фенотипически определялась I(О) группа крови. При детальном исследовании было установлено, что действие гена J B было подавлено редким рецессивным геном, который в гомозиготном состоянии оказал эпистатическое действие.

Полимерия - доминантные гены из разных аллельных пар влияют на степеньпроявления одного и тогоже признака. Полимерные гены принято обозначать одной буквой латинского алфавита с цифровыми индексами. Так у человека количество пигмента меланина в коже (и, следовательно, цвет кожи) определяется четырьмя неаллельными генами: Р 1 - Р 4 . Соответственно темно-коричневый цвет кожи будут иметь люди с генотипом Р 1 Р 1 Р 2 Р 2 Р 3 Р 3 Р 4 Р 4 . Самому светлому цвету кожи соответствует генотип р 1 р 1 - р 4 р 4 . Промежуточные варианты будут определять различную интенсивность пигментации: Например, человек с большим количеством доминантных генов в генотипе будет иметь более темную кожу. Признаки, детерминируемые полимерными генами, называются полигенными, для них свойственен большой диапазон изменчивости, т.е. широкая норма реакции. Таким образом, наследуются многие количественные и некоторые качественные признаки - рост, масса тела, величина артериального давления.

Основные закономерности наследо-вания признаков по Менделю реализуются благодаря сущест-вованию закона (гипотезы) чистоты гамет , выдвинутого Г. Менделем в 1865г.

Суть последнего состоит в том, что пара ал-лельных генов, определяющая тот или иной признак: а) никогда не смешива-ется; б) в процессе гаметогенеза расхо-дится в разные гаметы, то есть в каж-дую из них попадает один ген из аллельной пары. Цитологически это обеспечивается мейозом: аллельные гены лежат в гомологичных хромосо-мах, которые в анафазе мейоза расхо-дятся к разным полюсам и попадают в разные гаметы.

II. Дигибридное скрещивание

Ранее мы изучали закономерности наследования 1 признака (моногибридное скрещивание)

В общей и медицинской генетике часто возникает необходимость в изучении одновременного наследования двух или более признаков (ди- и полигибридное скрещивание). Если каждый их этих признаков контролируются парой аллельных генов, то можно предположить существование двух форм наследования: независимого и сцепленного. Принципиальные отличия будут определяться расположением генов в хромосомах. При сцепленном наследовании обе пары аллельных генов располагаются в одной паре гомологичных хромосом (т.е. в одной группе сцепления). При независимом наследовании пары аллельных генов располагаются в разных парах гомологичных хромосом.

Закономерности и механизмы независимого наследования были выявлены и сформулированы Г.Менделем в 3-м законе «Закон независимого комбинирования признаков»: при скрещивании гомозиготных организмов, отличающихся по двум (или более) парам альтернативных признаков, в первом поколении наблюдается единообразие по гено- и фенотипу, а при скрещивании гибридов первого поколения - во втором наблюдается расщепление по фенотипу 9:3:3:1, и при этом возникают организмы с комбинациями признаков, не свойственных родительским формам».

Для этой цели Мендель использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: семена желтые, гладкие и зеленые, морщинистые. В первом скрещивании он получил АаВb растения с желтыми, гладкими семенами, т.е закон единообразия гибридов первого поколения проявляется не только при моногибридном, но и полигибридном скрещивании, если родительские формы гомозиготны.

P: ААВВ х ааbb

G: АВ, АВ аb, ab

F 1: АаВb

P (F 1): АаВb х АаВb

ААВВ

АаВВ

АаВВ

ааВВ

F 2: 9: 3: 3: 1

9 частей растений с горошинами желтыми, гладкими, три части с желтыми морщинистыми, 3 с зелеными гладкими, и 1часть с зелеными, морщинистыми, (3+1) n - расщепление по фенотипу, где n- число анализируемых признаков.

Возникают организмы с новыми комбинациями признаков, не свойственных родительским формам.

Условия выполнения закона:

Признаки наследуются моногенно (наследование по каждой паре идет независимо)

Форма взаимодействия аллельных генов - полное доминирование

Пары аллельных генов располагаются в разных парах гомологичных хромосом

У человека независимо наследуются цвет глаз и цвет волос.

Причины разнообразия гибридов:

Независимое расхождение пар хромосом в анафазу I мейоза (приводит к образова-

нию гамет с различными комбинациями неаллельных генов)

Случайное слияние гамет при оплодотворении (возникают различные комбинации

генов в генотипах потомков, которые определяют комбинацию признаков)

Новые комбинации генов в генотипах потомков приводят к возникновению у них новых комбинаций признаков - главный вывод 3-го закона.

В 1908г. Сэттон и Пеннет обнаружили отклонения от свободного комбинирования признаков согласно III закону Менделя. В 1911-12г. Т.Морган с сотр. Описали явление сцепления генов - совместную передачу группы генов из поколения в поколение.

У дрозофилы гены окраски тела (b+ - серое тело, b - черное тело) и длины крыльев (vg+ - нормальные крылья, vg - короткие крылья), находятся в одной хромосоме, это сцепленные гены находящиеся в одной группе сцепления. Если скрестить двух гомозиготных особей с альтернативными признаками, то в первом поколении, все гибриды будут иметь одинаковый фенотип с проявлениями доминантных признаков (серое тело, нормальные крылья).

Это не противоречит закону единообразия гибридов I поколения Г.Менделя. Однако при дальнейшем скрещивании гибридов первого поколения между собой вместо ожидаемого расщепления по фенотипу 9:3:3:1, при сцепленном наследовании происходило расщепление в отношении 3:1, появились особи только с признаками родителей, а особей с перекомбинацией признаков не было.

Это связано с тем, что в мейозе гаметогенеза к полюсам клетки расходятся целые хромосомы. Одна хромосома из данной гомологичной пары и все гены, которые находятся в ней, отходят к одному полюсу и в дальнейшем попадают в одну гамету. Другая хромосома из данной пары отходит к противоположному полюсу и попадает в другую гамету. Совместное наследование генов находящихся в одной хромосоме, называется сцепленным наследованием.

Примером полного сцепления генов у человека может служить наследование резус фактора. Наличие резус-фактора обусловлено тремя сцепленными меду собой генами, поэтому наследование его происходит по типу моногибридного скрещивания.

Однако гены, находящиеся в одной хромосоме, иногда могут наследоваться раздельно, в этом случае говорят о неполном сцеплении генов

Продолжая свои работы по дигибридному скрещиванию, Морган провел два опыта по анализирующему скрещиванию и выявил, что сцепление генов может быть полным и неполным.

Причина неполного сцепления генов - кроссинговер. В мейозе при конъюгации гомологичные хромосомы могут перекрещиваться и обмениваться гомологичными участками. В этом случае гены одной хромосомы переходят в другую, гомологичную ей.

В период роста гаметогенеза происходит редупликация ДНК, генетическая характеристика овоциов и сперматоцитов I порядка 2n4c, каждая хромосома состоит из двух хроматид, которые содержат идентичный набор ДНК. В профазу редукционного деленя мейоза происходит коньюгация гомологичных хромосом и может произойти обмен аналогичными участками гомологичных хромосом - кроссинговер. В анафазу редукционного деления к полюсам расходятся целые гомологичные хромосомы, после завершения деления образуются клетки n2c - овоциты и сперматоциты II порядка. В анафазу эквационного деления расходятся хроматиды - nc, но при этом они отличаются комбинацией неаллельных генов. Новые комбинации неаллельных генов - генетический эффект кроссинговера. → новые комбинации признаков у потомков → комбинативная изменчивость.

Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.

Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид.

Теоретической основой Закономерностей сцепленного наследования являются положения Хромосомной теории наследствен-ности , которая была сформулирована и экспе-риментально доказана Т. Морганом и его сотрудниками в1911г. Ее сущность заключается в следующем:

Основным материальным носителем наследственности являются хромосомы с локализованными в них генами;

Гены расположены в хромосомах в линейном порядке в определенных локусах, аллельные гены занимают одинаковые локусы гомологичных хромосом.

Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются преимущественно вместе (или сцеплено); число групп сцепления равно гаплоидному набору хромосом.

Во время гаметогенеза (профаза I мейоза) может происходить обмен аллельными

генами - кроссинговер, который нарушает сцепления генов.

Частота кроссинговера пропорциональна расстоянию между генами. 1морганида - единица расстояния, равная 1% кроссинговера.

Данная теория дала объяснение законам Менделя, вскрыла цитологические основы наследования признаков.

Явление сцепления генов лежит в основе составления генетических карт хромосом - схемы относительного положения генов, находящихся в одной группе сцепления. Методы картирования хромосом направлены на то, чтобы узнать в какой хромосоме, и в каком ее локусе (месте) расположен ген, а также определить расстояние между соседними генами

Это отрезок прямой, на котором обозначен порядок расположения генов и указано расстояние между ними в морганидах, строится по результатам анализирующего скрещивания. Чем чаще признаки наследуются вместе, тем ближе гены, отвечающие за эти признаки, располагаются в хромосоме. Другими словами, о расположении генов в хромосоме можно судить по особенностям проявления признаков в фенотипе.

При анализе сцепления генов у животных и растений используется гибридологический метод, у человека - генеалогический метод, цитогенетический, а также метод гибридизации соматических клеток.

Цитологическая карта хромосомы представляет собой фотографию или точный рисунок хромосомы, на котором отмечается последовательность расположения генов. Ее строят на основе сопоставления результатов анализирующего скрещивания и хромосомных перестроек.

Менделирующие признаки.

Виды скрещивания.

Реципрокное скрещивание – скрещивание взаимно противоположных сочетаний анализируемого признака и пола (или типа спаривания) у форм, принимающих участие в этих скрещиваниях. Например, если в первом скрещивании самка имела доминантный признак, а самец - рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец - доминантный.

Скрещивание гибридов первого поколения с особями, сходными по генотипу с родительскими, называется возвратным . С помощью данного метода выявляют генотип.

Скрещивание потомков первого поколения с гомозиготной формой по рецессивному признаку, называется анализирующим скрещиванием .

Множественный аллелизм.

Множественные аллели. В опытах Менделя гены существовали лишь в двух формах – доминантной и рецессивной. Но большинство генов представлено не двумя, а большим числом аллелей. Кроме основных аллелей (доминантного и рецессивного) существуют еще промежуточные аллели. Серию аллелей (три и больше) одного гена называют множественными аллелями, а такое явление – множественным аллелизмом.

Наследование групп крови АВО и резус-фактора

Система групп крови АВО у человека наследуется по типу множественных аллелей одного аутосомного гена, локус которого обозначают буквой І (от слова изогемаглютиноген). Его три аллели обозначают I(0), I (А), I(В). Причем I (А), I(В) – кодоминантные, I(0) – рецессивный.

Аллель ІА контролирует синтез антигена А, аллель ІВ – антигена В, аллель IO – никакого. Антигены содержатся на поверхности эритроцитов и других клеток (лейкоциты, тромбоциты, клетки тканей). Каждый человек может унаследовать любые аллели с трех возможных, но не больше двух. В зависимости от их комбинации существуют 4 группы крови (4 фенотипы), отличия между которыми связаны с наличием или отсутствием особых веществ: агглютиногенов (антигенов) А и В на поверхности эритроцитов и агглютининов (антител) a и b в плазме крови. Четырем фенотипам отвечают шесть генотипов.

Вместе антиген А и антитело a не содержатся никогда, как и антиген В с антителом b. При взаимодействии антигенов с одноименными антителами происходит склеивания и выпадения в осадок эритроцитов (агглютинация), что свидетельствует про несовместимость крови донора и реципиента.

Наследования резус-фактора .

Резус-фактор обусловлен тремя доминантными тесно сцепленными генами (С, D, Е), размещенными в первой хромосоме. Основная роль принадлежит антигену D, если он определяется, то кровь относится к резус-положительной (DD или Dd), если не определяется – к резус-отрицательной (dd). Резус-фактор необходимо учитывать при переливании крови и трансплантации, так как на него в организме вырабатываются антитела.

Взаимодействие генов.

ВИДЫ ВЗАИМОДЕЙСТВИЯ АЛЛЕЛЬНЫХ ГЕНОВ. Различают полное доминирование, неполное доминирование, кодоминирование, сверходминирование.

1. Полное доминирование - это вид взаимодействия аллельных генов, при котором фенотип гетерозигот не отличается от фенотипа гомозигот по доминанте, то есть в фенотипе гетерозигот присутствует продукт доминантного гена.

2. Неполное доминирование. Так называется вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву и имеет среднее (промежуточное) значение между ними.

3. Кодоминирование - вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву, и в фенотипе гетерозигот присутствуют продукты обоих генов.

4.Сверхдоминирование – взаимодействие аллельных генов, при котором доминантный аллель в гетерозиготном состоянии проявляется в фенотипе сильнее, чем в гомозитнм (Аа >АА).

ВИДЫ ВЗАИМОДЕЙСТВИЯ НЕАЛЛЕЛЬНЫХ ГЕНОВ

Неаллельные гены - гены, расположенные или в неидентичных локусах гомологичных хромосом, или в разных парах гомологичных хромосом.

1. Комплементарность - вид взаимодействия неаллельных генов, при котором признак формируется в результате суммарного сочетания продуктов их доминантных аллелей. Нормальный слух формирует пара генов. В этом случае людям с нормальным слухом присущи генотипы ААВВ, ААВв, АаВв и АаВВ

Комплементарными, или взаимодополняющими, называются гены, которые поодиночке не проявляют своего действия, но при одновременном наличии в генотипе предопределяют развитие нового признака.

2. Эпистаз - вид взаимодействия неаллельных генов, при котором одна пара генов подавляет (не дает проявиться в фенотипе) другую пару генов.

Ген подавляющий действие другого гена называется супрессором (ингибитором). В зависимости от того какой ген подавляется, то различают доминантный и рецессивный эпистаз.

3. Полимерия. Это вид взаимодействия двух и более пар неаллельных генов, доминантные аллели которых однозначно влияют на развитие одного и того же признака.

Если число доминантных аллелей влияет на степень выраженности признака, полимерия называется кумулятивная . Чем больше доминантных аллелей, тем более интенсивно выражен признак. По этому типу наследуются признаки, которые можно выразить количественно: цвет кожи и волос, рост.

При некумулятивной полимерии количество доминантных аллелей на степень выраженности признака не влияет, и признак проявляется при наличии хотя бы одного из доминантных аллелей.

Наследственность и среда. Рассматривая действие генов, их аллелей необходимо учитывать и модифицирующее влияние среды, в которой развивается организм. Частота фенотипического проявления гена среди его носителей называется пенетрантностью . Пенетрантность бывает полной, если проявляется у 100% и неполной, если признак проявляется у части носителей.

Степень фенотипической выраженности признака называется экспрессивность.

При доминантных наследственных заболеваниях экспрессивность может колебаться. В одной и той же семье могут проявляться наследственные болезни от легких, едва заметных до тяжелых форм. Например, различные формы гипертонии, шизофрении, сахарного диабета и т.д.

Сцепленное наследование.

Группа сцепления - гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование - наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот.

Полное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.

Неполное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование - наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Доказано, что количество наследственных признаков организма значительно превышает число хромосом гаплоидного набора. Так, в гаплоидном наборе классического объекта генетических исследований - мухи-дрозофилы - есть только четыре хромосомы, но число наследственных признаков и, соответственно, генов которые их определяют, несомненно, значительно больше. Это означает, что в каждой хромосоме находится много генов. Поэтому вместе с признаками, которые наследуются независимо, должны существовать и такие, которые наследуются сцеплено друг с другом, так как они определяются генами, расположенными в одной хромосоме. Такие гены образуют группу сцепления. Количество групп сцепления в организмах определенного вида равно количеству хромосом в гаплоидном наборе (например, у дрозофилы 1пара = 4, у человека 1пара = 23).

На основании полученных результатов в опытах с дрозофилой, Т. Морган сформулировал следующее правило: гены, локализованные в одной хромосоме, наследуются сцеплено, причем, сила сцепления зависит от расстояния между генами.

На основании этих данных Т. X. Морган предположил, что гены, определяющие окраску тела и форму крыльев, расположены в одной хромосоме, но в процессе мейоза при образовании гамет гомологические хромосомы могут обмениваться участками, т.е. имеет место явление, получившее название перекрёст хромосом, или кроссинговер.

Кроссинговер - обмен участками гомологичных хромосом в процессе клеточного деления, преимущественно в профазе первого мейотического разделения, иногда в митозе.

Кроссинговер проявляется только тогда, когда гены находятся в гетерозиготном состоянии (АВ / ав). Если гены находятся в гомозиготном состоянии (АВ / АВ или аВ/аВ), обмен идентичными участками не дает новых комбинаций генов в гаметах и в поколении.

Отрезок хромосомы, на котором осуществляется 1% кроссинговера, равна одной морганиде (условная мера расстояния между генами). Частоту кроссинговера используют для того, чтобы определить взаимное расположение генов и расстояние между ними. Для построения генетической карты человека пользуются новыми технологиями, кроме того построены цитогенетические карты хромосом. Кроссинговер приводит к новому сочетанию генов, вызывает изменение фенотипа. Кроме того, он наряду с мутациями является важным фактором эволюции организмов.

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности :

· гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;

· каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

· гены расположены в хромосомах в определенной линейной последовательности;

· гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;



© 2024 skypenguin.ru - Советы по уходу за домашними животными