Мощность дозы ионизирующего излучения определяется. Дозы ионизирующих излучений (экспозиционная, поглощенная, эквивалентная, эффективная) и их единицы

Мощность дозы ионизирующего излучения определяется. Дозы ионизирующих излучений (экспозиционная, поглощенная, эквивалентная, эффективная) и их единицы

Радиацией (или ионизирующим излучением) называется совокупность разных видов физических полей и микрочастиц, которые имеют способности ионизировать вещества.

Радиация делится на несколько видов и измеряется при помощи различных научных приборов, специально разработанных для этих целей.

Кроме того, существуют единицы измерения, превышающие показатели которых могут быть смертельными для человека.

Наиболее точные и достоверные способы измерения радиации

При помощи дозиметра (радиометра) можно максимально точно измерить интенсивность радиации, произвести обследование определенного места или конкретных предметов. Чаще всего приборы для измерения уровня радиации используют в местах:

  1. Приближенных к районам радиационного излучения (например, рядом с ЧАЭС).
  2. Планируемого строительства жилого типа.
  3. В необследованных, неизведанных местностях во время походов, путешествий.
  4. При потенциальной покупке объектов жилого фонда.

Так как очищение от радиации территории и предметов, находящихся на ней, является невозможным (растений, мебели, оборудования, конструкций), то единственный верный способ обезопасить себя – вовремя проверить уровень опасности и по возможности держаться от источников и зараженных участков как можно дальше. Поэтому в обычных условиях для проверки местности, продуктов, предметов обихода можно применять бытовые дозиметры, успешно выявляющие опасность и ее дозы.

Нормирование радиации

Целью контроля радиации является не просто измерение ее уровня, но и определение соответствий показателей установленным нормам. Критерии и нормативы безопасного уровня радиационного излучения прописаны в отдельных законах и общеустановленных правилах. Условия содержания техногенных и радиоактивных веществ регламентируются для следующих категорий:

  • Продуктов питания
  • Воздуха
  • Строительных материалов
  • Компьютерной техники
  • Медицинского оборудования.

Производители многих видов продуктовых или промышленных товаров обязаны по закону прописывать в условиях и сертификационных документах критерии и показатели соответствия радиационной безопасности. Соответствующие государственные службы довольно строго отслеживают различные отклонения или нарушения в этом плане.

Единицы измерения радиации

Уже давно доказано, что радиационный фон присутствует практически везде, просто в большинстве мест его уровень признается безопасным. Уровень радиации измеряется в определенных показателях, среди которых основными считаются дозы – единицы энергии, поглощаемые веществом в момент прохождения ионизирующего излучения через него.

Основные виды доз и единицы их измерения можно перечислить в таких определениях:

  1. Доза экспозиционная – создается при гамма- или рентгеновском излучении и показывает степень ионизации воздуха; внесистемные единицы измерения – бэр или «рентген», в международной системе СИ классифицируется как «кулон на кг»;
  2. Поглощенная доза – единица измерения – грэй;
  3. Эффективная доза – определяется в индивидуальном порядке для каждого органа;
  4. Доза эквивалентная – в зависимости от разновидности излучения, рассчитывается исходя из коэффициентов.

Радиационное излучение может быть определено только и приборов. При этом существуют определенные дозы и установленные нормы, среди которых строго конкретизированы допустимые показатели, негативные дозы воздействия на человеческий организм и смертельные дозы.

Уровни безопасности радиационного излучения

Для населения установлены определенные уровни безопасных величин поглощаемых доз излучения, которые измеряются дозиметром.

На каждой территории есть свой естественный радиационный фон, но безопасным для населения считается величина, равная приблизительно 0,5 микрозиверт (µЗв) в час (до 50 микрорентген в час). При нормальном радиационном фоне наиболее безопасным уровнем внешнего облучения человеческого тела считается величина до 0,2 (µЗв) микрозиверт в час (значение, равное 20 микрорентгенам в час).

Самый верхний предел допустимого радиационного уровня – 0.5 µЗв — или 50 мкР/ч .

Соответственно, человек может перенести излучение, мощность которого составляет 10 мкЗ/ч (микрозиверт), а при сокращении времени воздействия до минимума, безвредно излучение в несколько миллизивертов в час. Так воздействует флюорография, рентген – до 3 мЗв. Снимок больного зуба у стоматолога – 0,2 мЗв. Поглощаемая доза облучения имеет способность накапливаться в течение жизни, но сумма не должна пересекать порог в 100-700 мЗв.

ДОЗЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ - физические величины, принятые в дозиметрии ионизирующих излучений для количественной характеристики поля излучения и воздействия излучения на облучаемый объект.

Основной величиной, применимой к любому виду ионизирующего излучения (альфа- и бета-частицы, гамма-излучение, протоны, нейтроны, мезоны и т. д.), является поглощенная доза излучения (D) - отношение энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме (D - dE/dm). Специальная единица поглощенной дозы - рад (pad). 1 рад соответствует поглощению энергии излучения 100 эрг в 1 г вещества (1 рад = 100 эрг/г). В Международной системе единиц (СИ) единицей поглощенной дозы излучения является грей (Гй), который определяется как 1 Дж/кг. Единицы рад и грей связаны следующим соотношением: 1 рад = 10 -2 Гй.

Производные единицы поглощенной дозы - килорад (крад), милли-рад (мрад), микрорад (мкрад) и т. д.

Увеличение поглощенной дозы излучения, отнесенное к единице времени, называется мощностью поглощенной дозы (P). P = dD/dt, где dD - приращение поглощенной дозы за интервал времени dt. Единицей мощности поглощенной дозы является любое частное от деления рада (грея) или его производной единицы на единицу времени (рад/час, рад/мин, рад/сек, мрад/час, мкрад/сек, Гй/с и т. д.).

Физ. мерой воздействия излучения на все облучаемое тело или на определенную его часть является интегральная поглощенная доза Dинт. Она равна поглощенной энергии излучения в массе тела (или его части). Интегральная доза излучения измеряется в единицах г-рад, кг-рад и т. п.

Поскольку поглощенная доза излучения неоднозначно определяет воздействие фотонов и частиц различных видов и энергии на живой организм, для сопоставлений при хрон, облучении введена величина эквивалентная доза излучения (D экв), единицей измерения к-рой является бэр (бэр). За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, к-рая при хрон, облучении вызывает такой же биол, эффект, что и 1 рад рентгеновского или гамма-излучения (см. Относительная биологическая эффективность излучений , Фактор качества).

Наряду с поглощенной дозой излучения, являющейся универсальной величиной, широко пользуются экспозиционной дозой (D 0) излучения, применимой только для воздуха и для фотонного (рентгеновского и гамма-) излучения с энергией до 3 МэВ.

Экспозиционная доза основана на ионизирующем действии излучения.

Для фотонного излучения не всегда наблюдается однозначная связь между поглощенной (т. е. переданной электронам в результате элементарных актов взаимодействия) энергией фотонов в данном объеме и ионизацией, произведенной этими вторичными электронами, т. к. часть вторичных электронов, пробеги которых больше линейных размеров этого объема или которые образованы у его границ, произведет ионизацию вне этого объема. Кроме того, в объеме могут произвести ионизацию вторичные электроны, образованные фотонами, поглощенными вне этого объема.

Исходя из особенностей взаимодействия фотонного излучения с веществом, экспозиционную дозу определяют как отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объеме воздуха с массой dm, полностью остановились в воздухе, к массе воздуха dm в указанном объеме: D0 - dQ/ dm.

Специальная единица экспозиционной дозы излучения - рентген (см. Радиологические величины, единицы). В Международной системе единиц (СИ) единицей экспозиционной дозы излучения является кулон на килограмм (Кл/кг). Единица рентген связана с ней следующим соотношением: 1 P = = 2,58*10 -4 Кл/кг. Производные единицы экспозиционной дозы излучения - миллирентген (мР) и микрорентген (мкР). Экспозиционная доза излучения, отнесенная к единице времени, называется мощностью экспозиционной дозы. Она измеряется в Р/час, мР/мин, мкР/час, мкР/сек и т.д.

При экспозиционной дозе в 1 P электроны и позитроны, образованные фотонами в 1 см 3 воздуха (при 0° и 760 мм рт. ст.), создадут в воздухе 2,08*10 9 пар ионов. Если учесть, что средняя энергия, затрачиваемая на образование одной пары ионов в воздухе, равна 34 эВ, то при экспозиционной дозе 1 P энергия фотонов, переданная электронам и позитронам в 1 см 3 , равна 0,114 эрг/см 3 , а поглощенная доза - 88 эрг/г, или 0,88*10 -2 Гй.

Однозначная связь между экспозиционной и поглощенной дозами может быть установлена, когда поглощенная доза измеряется в воздушном объеме, окруженном слоем воздуха или воздухоэквивалентного вещества, толщина к-рого больше или равна пробегу вторичных электронов, т. е. когда соблюдается условие электронного равновесия.

В этом случае при экспозиционной дозе 1 P поглощенная доза в воздухе равна 88 эрг/г. Это энергетический эквивалент рентгена.

Между экспозиционной дозой D0 и измеренной в условиях электронного равновесия поглощенной дозой D в какой-либо другой среде существует следующее соотношение D = kD0, где k имеет размерность рад/Р.

Поглощенная доза в воде и мышечной ткани отличается на 4-10% от поглощенной дозы в воздухе вследствие того, что эффективный атомный номер Z эфф воды и мышечной ткани близок, но не равен Z эфф воздуха. Вследствие этого в интервале энергии фотонного излучения 150 кэВ -3 МэВ k = 0,93 рад/P для воды и мышечной ткани и 0,97 рад/Р для жировой клетчатки, т. е. при экспозиционной дозе в 1 Р, поглощенная доза в воде и мышечной ткани в условиях электронного равновесия будет равна 93 рад. Для костной ткани, Z Эфф к-рой больше, чем у воздуха, а следовательно, и более существенно фотоэлектрическое поглощение в области малых энергий, значение k будет изменяться от 4,74 до 0,88 рад/P с увеличением энергии от 10 до 200 кэВ; начиная с 200 кэВ значение k остается примерно постоянным и равным 0,88 рад/Р.

При гамма-терапии, а также при ряде биол, экспериментов важно знать распределение дозного поля (см.) в облучаемом объекте, на основании чего можно судить о поглощенной дозе излучения в различных точках. Определение дозы в какой-либо точке внутри облучаемого объекта можно производить при наличии внутри него воздушной полости, что позволяет измерить в ней ионизацию. Такие измерения проводят обычно на моделях (фантомах). Фантомы изготовляются из тканеэквивалентных веществ, т. е. из веществ, у которых ослабление и рассеяние излучения происходят так же, как и в мышечной ткани (см. Фантомы дозиметрические). Такими веществами являются вода, парафин, картон, плексиглас. Помещая ионизационную камеру с тканеэквивалентными стенками в различных точках фантома, определяют распределение дозного поля, по к-рому можно судить о распределении поглощенной дозы.

Доза, создаваемая в глубине облучаемого объекта, называется глубинной дозой (D гл). Она складывается из дозы, создаваемой прямым излучением источника и рассеянным излучением. Доза, создаваемая рассеянным излучением, зависит от энергии излучения, геометрии облучения и размера объекта.

Поверхностная доза (Dп) - доза, создаваемая на поверхности облучаемого объекта. Она больше, чем доза, измеренная в воздухе в той же точке в отсутствие объекта, что обусловлено обратным рассеянием. Напр., для излучения с энергией 200 кэВ обратное рассеяние может достигать 20-25% от дозы первичного излучения в этой же точке, для гамма-излучения 60 Со оно равно 1 - 3% в зависимости от размеров поля облучения.

Отношение глубинной дозы к дозе в воздухе в месте расположения поверхности облученного объекта D" называется относительной глубинной дозой (Dгл/D"). Эта величина, выраженная в процентах, называется процентной глубинной дозой (Dгл/D"×100). Иногда относительной глубинной дозой называют отношение глубинной дозы к поверхностной (Dгл/Dп).

Дозы ионизирующих излучений в медицине и биологии. В естественных условиях организм животных и человека подвергается постоянному воздействию космических лучей и излучения естественных радиоактивных элементов, присутствующих в воздухе, почве и в тканях самого организма. Уровни природного излучения от всех источников в среднем соответствуют 100 мбэр в год, но в отдельных районах - до 1000 мбэр в год.

В современных условиях в процессе жизнедеятельности человек сталкивается с превышениями этого среднего уровня радиации. Для лиц, работающих в сфере действия ионизирующего излучения, установлены значения предельно допустимой дозы (ПДД) на все тело (см. Предельно допустимые дозы, излучения), которые при длительном воздействии не вызывают у человека нарушения общего состояния, а также изменения функций кроветворения и воспроизводства. Для ионизирующего излучения установлена ПДД 5 бэр в год. Расчет дозовых нагрузок производится с учетом коэффициента качества разных видов ионизирующего излучения.

Для оценки отдаленных проявлений действия излучения в потомстве учитывают возможность увеличения частоты мутаций. Доза излучения, вероятнее всего удваивающая частоту самопроизвольных мутаций у человека, не превышает 100 бэр на поколение; имеются, однако, указания и на еще меньшие значения этой дозы (3-12 бэр).

Генетически значимые дозы для населения находятся в пределах 7 - 55 мбэр/год.

Использование излучения в мед. практике приводит к увеличению дозовых нагрузок на население. Рентгенол. обследование сопровождается лучевым воздействием на те или иные поверхности тела в дозах 0,04 Р - 7,0 P при производстве снимков и до 50 P при просвечиваниях (табл. 1-4). Эти значения дозы имеют тенденцию к снижению.

Дозовые нагрузки при радиоизотопной диагностике в зависимости от используемого радиоактивного нуклида при однократном применении колеблются от 0,01 до 600 бэр/мкКи на все тело и от 0,003 до 6000 бэр/мКи на отдельные органы и ткани (см. Критический орган).

Медперсонал рентгеновских кабинетов, врачи-радиологи и медперсонал радиоманипуляционных кабинетов при выполнении различных работ подвергаются лучевому воздействию на отдельные области тела в дозах 0,03-0,18 бэр/сут (табл. 5).

При лучевой терапии злокачественных опухолей в зависимости от характера патол, процесса проводятся локальные облучения в дозах в среднем до 8000 бэр за 3-4 недели.

В радиобиологии различают следующие дозовые величины, характеризующие гибель животных в течение фиксированного времени (30- 60 дней): минимальная летальная доза (DLM), доза половинной (50%) выживаемости или смертности (DL50) в течение определенного срока, минимальная абсолютно летальная доза (МАЛД)- минимальная доза, вызывающая гибель всех животных.

Значения этих доз колеблются в зависимости от вида и линии животных. Так, напр., DL50 при однократном равномерном воздействии гамма-излучением лежат в пределах от 250 рад (2,5 Гй) для собак до 900 рад (9 Гй) для отдельных линий мышей. Для человека при тотальном облучении гамма-излучением МАЛД принимается равной 600 рад (6 Гй), a DL50 -400 рад (4 Гй).

Зависимость смертности от дозы выражается S-образной кривой (рис. 1). Зависимость средней продолжительности жизни от дозы (рис.2) проявляется в том, что по мере увеличения дозы происходит постепенное сокращение продолжительности жизни, пока она не достигает 3-3,5 сут. (ок. 1000 рад)- отрезок АБ. При дальнейшем возрастании дозы до 6000-10 000 рад (60- 100 Гй) средняя продолжительность жизни не изменяется - отрезок БВ. Увеличение дозы св. 10 000 рад (100 Гй) приводит к сокращению продолжительности жизни до одних суток, а затем и нескольких часов- отрезок ВГ. Начиная с дозы 20 000 рад отмечаются случаи «смерти под лучом». В зависимости от этих данных определяются формы лучевой болезни (см.): острая, острейшая и молниеносная.

Таблица 1. Экспозиционная доза на поверхности тела и интегральная доза, получаемые обследуемым при рентгеноскопии без электронно-оптического преобразователя

Вид исследования

Напряжение на трубке, кВ

Анодный ток, мА

Расстояние источник-кожа, см

Поле облучения, см 2

Время исследования, сек

Интегральная доза

Рентгеноскопия органов грудной клетки профилактическая

Рентгеноскопия органов грудной клетки по показаниям

Рентгеноскопия

Рентгеноскопия

пищевода

* Размер поля при прицельном облучении.

Таблица 2. Экспозиционная и интегральная дозы излучения, получаемые обследуемым при рентгенографии (один снимок)

Вид исследования

Напряжение на трубке (кВ)

Экспозиция(мА сек)

Расстояние источник-кожа, см

Поле облучения, см2

Экспозиционная доза на поверхности тела, P

Интегральная доза

Рентгенография легких, прямая

Рентгенография легких, боковая

Прицельный снимок легких

Телеснимок легких Томография легких, прямая

Томография легких, боковая

Флюорография малокадровая

Флюорография крупнокадровая

Рентгенография желудка (прицельный снимок)

Рентгенография пищевода

Таблица 3. Экспозиционная доза излучения на поверхности тела и в области гонад обследуемого при снимках

Исследуемая

Режим снимков

Экспозиционная доза

напряжение* на трубке(кВ)

фильтр (мм Al)

расстояние источник - кожа (см)

выдержка

на поверхности тела 1

на гонадах

Грудная клетка

Грудные позвонки

Желчный пузырь

Крестцово-поясничная область и поясничные позвонки

Малый таз

* Первые числа - при боковом снимке; вторые - при обзорном.

Таблица 4. Экспозиционная доза на поверхности тела и интегральная доза излучения, получаемые обследуемым при некоторых специальных рентгенодиагностических исследованиях

Вид исследования

Напряжение на трубке(кВ)

Расстояние источник - кожа (см)

Среднее время исследования

Экспозиционная доза на поверхности тела, P

Интегральная доза

Бронхография

рентгеноскопия

1 мин. 10 сек.

2 мин. 42 сек.

3 мин. 03 сек.

рентгенография

0,15 сек. 0,2 сек.

Ирригоскопии

рентгеноскопия

6 мин. 36 сек.

рентгенография

Таблица 5. Доза излучения, получаемая врачом-рентгенологом при рентгеноскопии без электронно-оптического преобразователя

Библиография: Зольникова Н.И., Меркулова Т. И. и Ищенко 3. Г. Лучевые нагрузки персонала при работе на различных гамма-терапевтических установках, Мед. радиол., т. 20, № 5, с. 46, 1975; Иванов В. И. Курс дозиметрии, М., 1970; Кацман А. Я. Лучевые нагрузки и противолучевая защита при рент-гено-диагностических процедурах, JI., 1966, библиогр.; Кронгауз А.Н., Ляпидевский В. К. и Фролова А. В. Физические основы клинической дозиметрии, М., 1969, библиогр.; Нормы радиационной безопасности (НРБ-76), М., 1977; Нормы радиационной безопасности для пациентов при использовании радиоактивных веществ с диагностической целью, Мед. радиол., т. 18, № 6, с. 87. 1973; Радиационная безопасность, Величины, единицы, методы и приборы, пер. с англ., под ред. И. Б. Кеирим-Маркуса, М., 1974, библиогр.

У. Я. Маргулис; Н. Г. Даренская (дозы ионизирующих излучений в медицине и биологии), А. Н. Кронгауз (табл.).

Радиация - фактор воздействия на живые организмы, который никак ими не распознается. Даже у людей отсутствуют своеобразные рецепторы, которые бы ощущали присутствие радиационного фона. Специалисты тщательно изучили влияние излучения на здоровье и жизнь человека. Были созданы и приборы, с помощью которых можно фиксировать показатели. Дозы облучения характеризуют уровень радиации, под влиянием которой человек находился в течение года.

В чем измеряют излучение?

Во Всемирной паутине можно найти немало литературы, посвященной радиоактивному излучению. Практически в каждом источнике встречаются числовые показатели норм облучения и следствия их превышения. Разобраться в непонятных единицах измерения удается не сразу. Изобилие информации, характеризующей предельно допустимые дозы облучения населения, могут легко запутать и знающего человека. Рассмотрим понятия в минимальном и более понятном объеме.

Список величин весьма внушителен: кюри, рад, грэй, беккерель, бэр - это только основные характеристики дозы облучения. Зачем так много? Их применяют для определенных областей медицины и охраны окружающей среды. За единицу воздействия радиации на какое-либо вещество принимают поглощенную дозу - 1 грэй (Гр), равный 1 Дж/кг.

При воздействии излучения на живые организмы говорят об Она равна поглощенной тканями организма дозе в перерасчете на единицу массы, умноженной на коэффициент повреждения. Константа выделена для каждого органа своя. В результате вычислений получается число с новой единицей измерения - зиверт (Зв).

На основании уже полученных данных о влиянии принятого излучения на ткани определенного органа определяется эффективная эквивалентная доза облучения. Этот показатель вычисляется при помощи умножения предыдущего числа в зивертах на коэффициент, который учитывает разную чувствительность тканей к радиоактивному излучению. Его значение позволяет оценить с учетом биологической реакции организма количество поглощенной энергии.

Что такое допустимые дозы облучения и когда они появились?

Специалисты радиационной безопасности на основе данных о влиянии облучения на здоровье человека разработали предельно допустимые значения энергии, которые могут быть поглощены организмом без вреда. Предельно допустимые дозы (ПДД) указаны для разового или длительного облучения. При этом учитывают характеристику лиц, подвергающихся действию радиационного фона.

  • А - лица, работающие с источниками ионизирующего излучения. По ходу выполнения своих трудовых обязанностей подвергаются облучению.
  • Б - население определенной зоны, работники, чьи обязанности не связаны с получением радиации.
  • В - население страны.

Среди персонала различают две группы: работники контролируемой зоны (дозы облучения превышают 0.3 от годового ПДД) и сотрудники вне такой зоны (0.3 от ПДД не превышается). В пределах доз различают 4 типа критических органов, то есть тех, в чьих тканях наблюдается наибольшее количество разрушений в связи с ионизированным излучением. Учитывая перечисленные категории лиц среди населения и работников, а также критические органы, устанавливает ПДД.

Впервые пределы облучения появились в 1928 году. Величина годового поглощения радиационного фона составляла 600 миллизиверт (мЗв). Установлена она была для медицинских работников - рентгенологов. С изучением влияния ионизированного излучения на продолжительность и качество жизни ПДД ужесточились. Уже в 1956 году планка снизилась до 50 миллизиверт, а в 1996-м Международная комиссия по защите от радиации уменьшила ее до 20 мЗв. Стоит заметить, что при установлении ПДД в расчет не берут естественное поглощение ионизированной энергии.

Естественная радиация

Если избежать встречи с радиоактивными элементами и их излучением еще хоть как-то можно, то от природного фона никуда не скрыться. Естественное облучение в каждом из регионов имеет индивидуальные показатели. Оно было всегда и с годами никуда не пропадает, а лишь накапливается.

Уровень природной радиации зависит от нескольких факторов:

  • показателя высоты над уровнем моря (чем ниже, тем меньше фон, и наоборот);
  • структуры почвы, воды, горных пород;
  • искусственных причин (производство, АЭС).

Человек получает радиацию через продукты питания, излучение почв, солнца, при медицинском обследовании. Дополнительными источниками облучения становятся производственные предприятия, атомные станции, испытательные полигоны и пусковые аэродромы.

Специалисты считают наиболее приемлемым облучение, которое не превышает 0.2 мкЗв за один час. А верхняя граница нормы радиации определяется в 0.5 мкЗв в час. По прошествии некоторого времени непрерывного воздействия ионизированных веществ допустимые дозы облучения для человека увеличиваются до 10 мкЗв/ч.

По мнению врачей, за всю жизнь человек может получить радиацию в размере не более 100-700 миллизиверт. По факту люди, проживающие в горной местности, подвергаются излучению в несколько больших размерах. Средние показатели поглощения ионизированной энергии в год составляют около 2-3 миллизиверт.

Как именно радиация влияет на клетки?

Ряд химических соединений обладает свойством радиационного излучения. Происходит активное деление ядер атомов, что приводит к высвобождению большого количества энергии. Эта сила способна буквально вырывать электроны от атомов клеток вещества. Сам процесс получил название ионизации. Атом, который подвергся такой процедуре, изменяет свои свойства, что приводит к изменению всего строения вещества. За атомами меняются молекулы, за молекулами общие свойства живой ткани. С возрастанием уровня облучения увеличивается и количество измененных клеток, что приводит к более глобальным переменам. В связи с чем и были высчитаны допустимые дозы облучения для человека. Дело в том, что изменения в живых клетках затрагивают и молекулу ДНК. Иммунная система активно восстанавливает ткани и даже способна «починить» поврежденную ДНК. Но в случаях значительного облучения или нарушения защитных сил организма развиваются заболевания.

С точностью предположить вероятность развития болезней, возникающих на клеточном уровне, при обычном поглощении радиации сложно. Если же эффективная доза облучения (это около 20 мЗв в год для работников промышленности) превышает рекомендуемые показатели в сотни раз, общее состояние здоровья значительно снижается. Иммунная система дает сбои, что влечет за собой развитие различных заболеваний.

Огромные дозы радиации, которые могут быть получены вследствие аварии на АЭС или взрыва атомной бомбы, не всегда совместимы с жизнью. Ткани под воздействием измененных клеток погибают в большом количестве и просто не успевают восстановиться, что влечет за собой нарушение жизненно важных функций. Если часть тканей сохранится, то у человека будет шанс на выздоровление.

Показатели допустимых доз облучения

Согласно нормам радиационной безопасности, установлены предельно допустимые величины ионизирующего облучения в год. Рассмотрим приведенные показатели в таблице.

Как видно из таблицы, допустимая доза облучения в год для работников вредных производств и АЭС сильно отличается от показателей, выведенных для населения санитарно-защищенных зон. Все дело в том, что при длительном поглощении допустимого ионизирующего излучения организм справляется со своевременным восстановлением клеток без нарушения здоровья.

Разовые дозы облучения человека

Значительное увеличение радиационного фона приводит к более серьезным повреждениям тканей, в связи с чем начинают неправильно функционировать или вовсе отказывать органы. возникает лишь при получении огромного количества ионизирующей энергии. Незначительное превышение рекомендуемых доз может привести к заболеваниям, которые могут быть вылечены.

Превышающие норму дозы облучения и последствия

Разовая доза (мЗв)

Что происходит с организмом

Изменений в состоянии здоровья не наблюдаются

Снижается общее количество лимфоцитов (снижается иммунитет)

Значительное снижение лимфоцитов, признаки слабости, тошнота, рвота

В 5% случаев смертельный исход, у большинства наблюдается так называемое лучевое похмелье (признаки схожи с алкогольным похмельем)

Изменения в крови, временная мужская стерилизация, 50% смертности в течение 30 дней после облучения

Смертельная доза облучения, не подлежит лечению

Наступает кома, смерть в течение 5-30 минут

Мгновенная смерть от луча

Разовое получение большого количество радиационного излучения негативно влияет на состояние организма: клетки стремительно разрушаются, не успевая восстановиться. Чем сильнее воздействие, тем больше возникает очагов поражения.

Развитие лучевой болезни: причины

Лучевой болезнью называют общее состояние организма, вызванное влиянием радиоактивного излучения, превышающего ПДД. Поражения наблюдаются со стороны всех систем. Согласно заявлениям Международной комиссии по радиологической защите, дозы облучения, вызывающие лучевую болезнь, начинаются с показателей в 500 мЗв за один раз или более 150 мЗв в год.

Поражающее действие высокой интенсивности (более 500 мЗв разово) возникает вследствие использования атомного оружия, его испытаний, возникновения техногенных катастроф, проведения процедур интенсивного облучения при лечении онкологических, ревматологических заболеваний и болезней крови.

Развитию хронической лучевой болезни подлежат медицинские работники, находящиеся в отделении лучевой терапии и диагностике, а также пациенты, которые часто подвергаются радионуклидным и рентгенологическим исследованиям.

Классификация лучевой болезни, в зависимости от доз радиации

Болезнь характеризуют исходя из того, какую дозу ионизирующего облучения получил больной и как долго это происходило. Однократное воздействие приводит к острому состоянию, а постоянно повторяющееся, но менее массивное - к хроническим процессам.

Рассмотрим основные формы лучевой болезни, в зависимости от полученного разового облучения:

  • лучевая травма (менее 1 Зв) - возникают обратимые изменения;
  • костномозговая форма (от 1 до 6 Зв) - имеет четыре степени, в зависимости от полученной дозы. Смертность при таком диагнозе составляет более 50%. Поражаются клетки красного костного мозга. Состояние может улучшить трансплантация. Период восстановления долгий;
  • желудочно-кишечная (10-20 Зв) характеризуется тяжелым состоянием, сепсисом, кровотечениями ЖКТ;
  • сосудистая (20-80 Зв) - наблюдаются гемодинамические нарушения и тяжелая интоксикация организма;
  • церебральная (80 Зв) - летальный исход в течение 1-3 дней вследствие отека мозга.

Шанс на выздоровление и реабилитацию имеют больные с костномозговой формой (в половине случаев). Более тяжелые состояния не подлежат лечению. Смерть наступает в течение нескольких дней или недель.

Течение острой лучевой болезни

После того как была получена высокая доза излучения, и доза облучения достигла 1-6 Зв, развивается острая лучевая болезнь. Врачи разделяют состояния, которые сменяют друг друга, на 4 этапа:

  1. Первичная реактивность. Наступает в первые часы после облучения. Характеризуется слабостью, понижением артериального давления, тошнотой и рвотой. При облучении свыше 10 Зв переходит сразу в третью фазу.
  2. Латентный период. После 3-4 дней с момента облучения и до месячного срока состояние улучшается.
  3. Развернутая симптоматика. Сопровождается инфекционными, анемическими, кишечными, геморрагическими синдромами. Состояние тяжелое.
  4. Восстановление.

Острое состояние лечится в зависимости от характера клинической картины. В общих случаях назначается путем введения средств, нейтрализующих радиоактивные вещества. При надобности выполняется переливание крови, трансплантация костного мозга.

Пациенты, которым удается пережить первые 12 недель течения острой лучевой болезни, в основном имеют благоприятный прогноз. Но даже при полном восстановлении у таких людей возрастает риск развития онкологических заболеваний, а также рождения потомства с генетическими аномалиями.

Хроническая лучевая болезнь

При постоянном воздействии радиоактивного излучения в меньших дозах, но суммарно превышающих в год 150 мЗв (не считая природного фона), начинается хроническая форма лучевой болезни. Ее развитие проходит три этапа: формирование, восстановление, исход.

Первый этап протекает в течение нескольких лет (до 3). Тяжесть состояния может быть определена от легкой до тяжелой. Если изолировать пациента от места получения радиоактивного излучения, то в течение трех лет наступит фаза восстановления. После чего возможно полное выздоровление или же, наоборот, прогрессирование болезни с быстрым смертельным исходом.

Ионизированное излучение способно в мгновения разрушить клетки организма и вывести его из строя. Именно поэтому соблюдение предельных доз излучения является важным критерием работы на вредном производстве и жизни неподалеку от АЭС и испытательных полигонов.

Стали появляться и единицы их измерений. Например: рентген, кюри. Но они не были связаны какой-либо системой, а потому и называются внесистемными единицами. Во всем мире сейчас действует единая система измерений - СИ (система интернациональная). У нас она подлежит обязательному применению с 1 января 1982 г. К 1 января 1990 г. этот переход надо было завершить. Но в связи с экономическими и другими трудностями процесс затягивается. Однако вся новая аппаратура, в том числе и дозиметрическая, как правило, градуируется в новых единицах.

Единицы радиоактивности. В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин - один распад в секунду (расп./с) В системе СИ эта единица получила название беккерель (Бк). В практике радиационного контроля, в том числе и в Чернобыле , до последнего времени широко использовалась внесистемная единица активности - кюри (Ки). Один кюри - это 3,7.10 10 распадов в секунду.

Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы: Ки/т, мКи/г, кБк/кг и т.п. (удельная активность). На единицу объема: Ки/м 3 , мКи/л, Бк/см 3 и т.п. (объемная концентрация) или на единицу площади: Ки/км 2 , мКи/см 2 , Бк/м 2 и т.п.

Мощность дозы (мощность поглощенной дозы) - приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе Си - грей в секунду. Эта такая мощность поглощенной дозы излучения, при которой за 1 секунду в веществе создается доза излучения в 1 Гр.


На практике для оценки поглощенной дозы излучения до сих пор широко используют внесистемную единицу мощности поглощенной дозы - рад в час (рад/ч) или рад в секунду (рад/с). 1 Гр = 100 рад.

Эквивалентная доза - это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов излучений. Определяется она по формуле Д экв = Q . Д, где Д - поглощенная доза данного вида излучения, Q - коэффициент качества излучения, который для различных видов ионизирующих излучений с неизвестным спектральным составом принят для рентгеновского и гамма-излучения - 1, для бета-излучения - 1, для нейтронов с энергией от 0,1 до 10 МэВ - 10, для альфа-излучений с энергией менее 10 МэВ - 20. Из приведенных цифр видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают, соответственно, в 10 и 20 раз больший поражающий эффект. В системе СИ эквивалентная доза измеряется в зивертах (Зв).

Зиверт равен одному грею, деленному на коэффициент качества. При Q = 1 получаем

1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр.

Бэр (биологический эквивалент рентгена) - это внесистемная единица эквивалентной дозы, такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения.

Мощность эквивалентной дозы - отношение приращения эквивалентной дозы за какой-то интервал времени. Выражается в зивертах в секунду. Поскольку время пребывания человека в поле излучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в микрозивертах в час (мкЗв/час).

Согласно заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а в случаях кратковременного облучения - при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает ОЛБ.

Мощность эквивалентной дозы, создаваемая естественным излучением (земного и космического происхождения), колеблется в пределах 1,5 - 2 мЗв/год и плюс искусственные источники (медицина, радиоактивные осадки) от 0,3 до 0,5 мЗв/год. Вот и выходит, что человек в год получает от 2 до 3 мЗв. Эти цифры примерные и зависят от конкретных условий. По другим источникам, они выше и доходят до 5 мЗв/год.

Экспозиционная доза - мера ионизационного действия фотонного излучения, определяемая по ионизации воздуха в условиях электронного равновесия. В системе СИ единицей экспозиционной дозы является один кулон на килограмм (Кл/кг). Внесистемной единицей является рентген (Р), 1 Р = 2,58 . 10 -4 Кл/кг. В свою очередь 1 Кл/кг = 3,876 . 10 3 Р.

Мощность экспозиционной дозы - приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ - ампер на килограмм (А/кг). Однако в переходный период можно пользоваться внесистемной единицей - рентген в секунду (Р/сек).

С середины прошлого века в науку пришло новое слово - радиация. Ее открытие совершило переворот в умах физиков всего мира и позволило отбросить некоторые ньютоновские теории и сделать смелые предположения относительно строения Вселенной, ее образования и нашего места в ней. Но это все - для специалистов. Обыватели же только вздыхают и пытаются сложить воедино такие разрозненные знания об этом предмете. Усложняет процесс тот факт, что единиц измерения радиации существует довольно много, и все они правомочны.

Терминология

Первый термин, с которым стоит познакомиться, - это, собственно, радиация. Так называют процесс излучения каким-либо веществом мельчайших частиц, таких как электроны, протоны, нейтроны, атомы гелия и другие. В зависимости от вида частицы свойства излучения отличаются друг от друга. Излучение наблюдают либо при распаде веществ на более простые, либо при их синтезе.

Единицы измерения радиации - это условные понятия, которые указывают, сколько элементарных частиц высвобождается из вещества. На данный момент физика оперирует семью разными единицами и их комбинациями. Это позволяет описывать различные процессы, происходящие с материей.

Радиоактивный распад - произвольное изменение строения нестабильных ядер атомов при помощи высвобождения микрочастиц.

Постоянная распада - это статистическое понятие, предсказывающее вероятность разрушения атома на определенный отрезок времени.

Период полураспада - это временной промежуток, за который распадается половина всего количества вещества. У некоторых элементов он исчисляется минутами, а у других - годами, и даже десятилетиями.

В чем измеряется радиация

Единицы измерения радиации - не единственные, которые используются для оценки свойств Кроме них применяют такие величины, как:
- активность источника радиации;
- плотность потока (количество ионизирующих частиц на единицу площади).

Кроме этого, существует разница в описании воздействия радиации на живые и неживые объекты. Так, если вещество неживое, то к нему применимы понятия:

Поглощенная доза;
- экспозиционная доза.

Если же излучение подействовало на живую ткань, то используют следующие термины:

Эквивалентная доза;
- эффективная эквивалентная доза;
- мощность дозы.

Единицами измерения радиации являются, как уже говорилось выше, условные числовые значения, принятые учеными для облегчения расчетов и построения гипотез и теорий. Возможно, именно поэтому не существует единой общепринятой единицы измерения.

Кюри

Одной из единиц измерения радиации является кюри. Она не относится к системным (не принадлежит к системе СИ). В России ее используют в ядерной физике и медицине. Активность вещества будет равняться одному кюри, если за одну секунду в нем будет происходить 3,7 миллиардов радиоактивных распадов. То есть можно сказать, что один кюри равен трем миллиардам семистам миллионам беккерелей.

Такое число получилось благодаря тому, что Мария Кюри (которая и ввела в науку данный термин) проводила свои опыты на радии и взяла за основу его скорость распада. Но со временем физики решили, что числовое значение этой единицы лучше привязать к другой - беккерелю. Это позволило избежать некоторых погрешностей в математических расчетах.

Помимо кюри, часто можно встретить кратные или дольные единицы, такие как:
- мегакюри (равен 3,7 на 10 в 16 степени беккерелей);
- килокюри (3,7 тысячи миллиардов беккерелей);
- милликюри (37 миллионов беккерелей);
- микрокюри (37 тысяч беккерелей).

При помощи этой единицы можно выразить объемную, поверхностную или удельную активность вещества.

Беккерель

Единица измерения дозы радиации беккерель является системной и входит в Международную систему единиц (СИ). Она является самой простой, потому что активность радиации в один беккерель означает, что в веществе происходит всего один радиоактивный распад за секунду.

Она получила свое название в честь Антуана французского физика. Название было одобрено в конце прошлого века и используется до сих пор. Так как это достаточно маленькая единица, то для обозначения активности используют десятичные приставки: кило-, милли-, микро- и другие.

В последнее время вместе с беккерелями стали использоваться такие внесистемные единицы, как кюри и резерфорд. Один резерфорд равняется миллиону беккерелей. В описании объемной или поверхностной активности можно встретить обозначения беккерель на килограмм, беккерель на метр (квадратный или кубический) и различные их производные.

Рентген

Единица измерения радиации рентген тоже не является системной, хоть и используется повсеместно для обозначения экспозиционной дозы полученного гамма-излучения. Один рентген равен такой дозе излучения, при которой один кубический сантиметр воздуха при стандартном атмосферном давлении и нулевой температуре несет в себе заряд, равный 3,3*(10*-10). Это равно двум миллионам пар ионов.

Несмотря на то, что по законодательству РФ большинство внесистемных единиц использовать запрещено, рентген используется в маркировке дозиметров. Но и они скоро перестанут использоваться, так как более практичным оказалось записывать и вычислять все в греях и зивертах.

Рад

Единица измерения радиации рад находится вне системы СИ и равняется такому количеству излучения, при котором одному грамму вещества передается одна миллионная джоуля энергии. То есть один рад - это 0,01 джоуль на килограмм материи.

Материалом, который поглощает энергию, может быть как живая ткань, так и другие органические и неорганические вещества и субстанции: почва, вода, воздух. Как самостоятельная единица рад был введен в 1953 году и в России имеет право использоваться в физике и медицине.

Грей

Это еще одна единица измерения уровня радиации, которая признана Международной системой единиц. Она отражает поглощенную дозу радиации. Считается, что вещество получило дозу в один грей, если энергия, которая передалась с излучением, равна одному джоулю на килограмм.

Эта единица получила свое название в честь английского ученого Льюиса Грея и была официально введена в науку в 1975 году. По правилам, полное название единицы пишется с маленькой буквы, но ее сокращенное обозначение - с большой. Один грей равен ста радам. Помимо простых единиц, в науке используют еще кратные и дольные их эквиваленты, такие как килогрей, мегагрей, децигрей, сантигрей, микрогрей и другие.

Зиверт

Единица измерения радиации зиверт используется для обозначения эффективной и эквивалентной доз излучения и также входит в систему СИ, как грей и беккерель. Используется в науке с 1978 года. Один зиверт равен энергии, которую поглотил килограмм ткани после воздействия одного грея гамма-лучей. Название свое единица получила в честь Рольфа Зиверта, ученого из Швеции.

Судя по определению, зиверты и греи равны, то есть эквивалентная и поглощенная дозы имеют одинаковые размеры. Но разница между ними все-таки есть. При определении эквивалентной дозы необходимо учитывать не только количество, но и другие свойства излучения, такие как длина волны, амплитуда и какие частицы ее представляют. Поэтому числовое значение поглощенной дозы умножают на коэффициент качества излучения.

Так, например, при всех прочих равных условиях поглощенный эффект альфа-частиц будет в двадцать раз сильнее, чем такая же доза гамма-излучения. Помимо этого, необходимо учитывать тканевой коэффициент, который показывает, как органы реагируют на излучение. Поэтому эквивалентная доза используется в радиобиологии, а эффективная - в гигиене труда (для нормирования воздействия излучения).

Солнечная постоянная

Существует теория, что жизнь на нашей планете появилась благодаря солнечной радиации. Единицы измерения излучения от звезды - калории и ватты, деленные на единицу времени. Так было решено потому, что величина радиации от Солнца определяется по количеству тепла, которое получают объекты, и интенсивности, с которой оно поступает. До Земли доходит всего половина миллионной доли от общего количества выбрасываемой энергии.

Радиация от звезд распространяется в космосе со скоростью света и в нашу атмосферу попадет в виде лучей. Спектр этого излучения довольно широкий - от «белого шума», то есть радиоволн, до рентгеновских лучей. Частицы, которые тоже попадают вместе с излучением, - это протоны, но иногда могут быть и электроны (если выброс энергии был большим).

Излучение, получаемое от Солнца, является движущей силой всех живых процессов на планете. Количество получаемой нами энергии зависит от времени года, положения звезды над горизонтом и прозрачности атмосферы.

Воздействие радиации на живых существ

Если одинаковые по своим характеристикам живые ткани облучать разными видами радиации (в одинаковой дозе и интенсивности), то результаты будут разниться. Поэтому для определения последствий мало только поглощенной или экспозиционной дозы, как в случае с неживыми объектами. На сцене появляются единицы измерения проникающей радиации, такие как зиверты бэры и греи, которые указывают на эквивалентную дозу радиации.

Эквивалентной называется доза, поглощенная живой тканью и умноженная на условный (табличный) коэффициент, который учитывает, насколько опасен тот или иной вид радиации. Чаще всего для ее измерения используется зиверт. Один зиверт равняется ста бэрам. Чем больше коэффициент тем, соответственно, опаснее излучение. Так, для фотонов это - единица, а для нейтронов и альфа-частиц - двадцать.

Со времени аварии на Чернобыльской АЭС в России и других странах СНГ стали особое внимание уделять уровню радиационного воздействия на человека. Эквивалентная доза от естественных источников излучения не должна быть выше пяти миллизивертов в год.

Действие радионуклидов на не живые объекты

Радиоактивные частицы несут в себе заряд энергии, который они передают веществу, когда сталкиваются с ним. И чем больше частиц соприкоснется на своем пути с определенным количеством вещества, тем больше оно получит энергии. Количество ее оценивается в дозах.

  1. Поглощенная доза - это то которое было получено единицей вещества. Измеряется в греях. Эта величина не учитывает тот факт, что воздействие разных видов излучения на материю отличается.
  2. Экспозиционная доза - представляет собой поглощенную дозу, но с учетом степени ионизации вещества от воздействия разных радиоактивных частиц. Измеряется в кулонах на килограмм или рентгенах.


© 2024 skypenguin.ru - Советы по уходу за домашними животными