Логика. Логические функции

Логика. Логические функции

J ∧ ¬K ∧ L ∧ ¬M ∧ (N ∨ ¬N) = 0, где J, K, L, M, N — логические переменные?

Решение.

Выражение (N ∨ ¬N) истинно при любом N, поэтому

J ∧ ¬K ∧ L ∧ ¬M = 0.

Применим отрицание к обеим частям логического уравнения и используем закон де Моргана ¬ (А ∧ В) = ¬ А ∨ ¬ В. Получим ¬J ∨ K ∨ ¬L ∨ M = 1.

Логическая сумма равна 1, если хотя бы одно из составляющих ее высказываний равно 1. Поэтому полученному уравнению удовлетворяют любые комбинации логических переменных кроме случая, когда все входящие в уравнение величины равны 0. Каждая из 4 переменных может быть равна либо 1, либо 0, поэтому всевозможных комбинаций 2·2·2·2 = 16. Следовательно, уравнение имеет 16 −1 = 15 решений.

Осталось заметить, что найденные 15 решений соответствуют любому из двух возможных значений значений логической переменной N, поэтому исходное уравнение имеет 30 решений.

Ответ: 30

Сколько различных решений имеет уравнение

((J → K) → (M ∧ N ∧ L)) ∧ ((J ∧ ¬K) → ¬ (M ∧ N ∧ L)) ∧ (M → J) = 1

где J, K, L, M, N – логические переменные?

В ответе не нужно перечислять все различные наборы значений J, K, L, M и N, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение.

Используем формулы A → B = ¬A ∨ B и ¬(А ∨ В) = ¬А ∧ ¬В

Рассмотрим первую подформулу:

(J → K) → (M ∧ N ∧ L) = ¬(¬J ∨ K) ∨ (M ∧ N ∧ L) = (J ∧ ¬K) ∨ (M ∧ N ∧ L)

Рассмотрим вторую подформулу

(J ∧ ¬K) → ¬(M ∧ N ∧ L) = ¬(J ∧ ¬K) ∨ ¬(M ∧ N ∧ L) = (¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L

Рассмотрим третью подформулу

1) M → J = 1 следовательно,

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (1 ∧ N ∧ L) = ¬K ∨ N ∧ L;

(0 ∨ K) ∨ 0 ∨ ¬N ∨ ¬L = K ∨ ¬N ∨ ¬L;

Объединим:

¬K ∨ N ∧ L ∧ K ∨ ¬N ∨ ¬L = 0 ∨ L ∨ 0 ∨ ¬L = L ∨ ¬L = 1 следовательно, 4 решения.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (0 ∧ N ∧ L) = ¬K;

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (0 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L = K ∨ 1 ∨ ¬N ∨ ¬L

Объединим:

K ∨ 1 ∨ ¬N ∨ ¬L ∧ ¬K = 1 ∨ ¬N ∨ ¬L следовательно, 4 решения.

в) M = 0 J = 0.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (0 ∧ ¬K) ∨ (0 ∧ N ∧ L) = 0.

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (1 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L.

Ответ: 4 + 4 = 8.

Ответ: 8

Сколько различных решений имеет уравнение

((K ∨ L) → (L ∧ M ∧ N)) = 0

где K, L, M, N – логические переменные? В Ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве Ответа Вам нужно указать количество таких наборов.

Решение.

перепишем уравнение, используя более простые обозначения операций:

((K + L) → (L · M · N)) = 0

1) из таблицы истинности операции «импликация» (см. первую задачу) следует, что это равенство верно тогда и только тогда, когда одновременно

K + L = 1 и L · M · N = 0

2) из первого уравнения следует, что хотя бы одна из переменных, K или L, равна 1 (или обе вместе); поэтому рассмотрим три случая

3) если K = 1 и L = 0, то второе равенство выполняется при любых М и N; поскольку существует 4 комбинации двух логических переменных (00, 01, 10 и 11), имеем 4 разных решения

4) если K = 1 и L = 1, то второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

5) если K = 0, то обязательно L = 1 (из первого уравнения); при этом второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

6) всего получаем 4 + 3 + 3 = 10 решений.

Ответ: 10

Сколько различных решений имеет уравнение

(K ∧ L) ∨ (M ∧ N) = 1

Решение.

Выражение истинно в трех случаях, когда (K ∧ L) и (M ∧ N) равны соответственно 01, 11, 10.

1) "01" K ∧ L = 0; M ∧ N = 1, => M, N равны 1, а K и L любые, кроме как одновременно 1. Следовательно, 3 решения.

2) "11" K ∧ L = 1; M ∧ N = 1. => 1 решение.

3) "10" K ∧ L = 1; M ∧ N = 0. => 3 решения.

Ответ: 7.

Ответ: 7

Сколько различных решений имеет уравнение

(X ∧ Y ∨ Z) → (Z ∨ P) = 0

где X, Y, Z, P – логические переменные? В ответе не нужно перечислять все различные наборы значений, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Решение.

(X ∧ Y ∨ Z) → (Z ∨ P) = 0 =>

¬(X ∧ Y ∨ Z) ∨ (Z ∨ P) = 0;

(¬X ∨ ¬Y ∧ ¬Z) ∨ (Z ∨ P) = 0;

Логическое ИЛИ ложно только в одном случае: когда оба выражения ложны.

Следовательно,

(Z ∨ P) = 0 => Z = 0, P = 0.

¬X ∨ ¬Y ∧ ¬Z = 0 => ¬X ∨ ¬Y ∧ 1 = 0 =>

¬X ∨ ¬Y = 0 => X = 1; Y = 1.

Следовательно, существует только одно решение уравнения.

Ответ: 1

Сколько различных решений имеет уравнение

(K ∨ L) ∧ (M ∨ N) = 1

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Решение.

Логическое И истинно только в одном случае: когда все выражения истинны.

K ∨ L = 1, M ∨ N = 1.

Каждое из уравнений дает по 3 решения.

Рассмотрим уравнение А ∧ В = 1 если и А и В принимают истинные значения в трех случаях каждое, то в целом уравнение имеет 9 решений.

Следовательно ответ 9.

Ответ: 9

Сколько различных решений имеет уравнение

((A → B)∧ C) ∨ (D ∧ ¬D)= 1,

где A, B, C, D – логические переменные?

В ответе не нужно перечислять все различные наборы значений A, B, C, D, при которых выполнено данное равенство. В качестве ответа вам нужно указать количество таких наборов.

Решение.

Логическое "ИЛИ" истинно, когда истинно хотя бы одно из утверждений.

(D ∧ ¬D)= 0 при любых D.

Следовательно,

(A → B)∧ C) = 1 => C = 1; A → B = 1 => ¬ A ∨ B = 1, что дает нам 3 варианта решений при каждом D.

(D ∧ ¬ D)= 0 при любых D, что дает нам два варианта решений (при D = 1, D = 0).

Следовательно: всего решений 2*3 = 6.

Итого 6 решений.

Ответ: 6

Сколько различных решений имеет уравнение

(¬K ∨ ¬L ∨ ¬M) ∧ (L ∨ ¬M ∨ ¬N) = 0

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Решение.

Применим отрицание к обеим частям уравнения:

(K ∧ L ∧ M) ∨ (¬L ∧ M ∧ N) = 1

Логическое ИЛИ истинно в трех случаях.

Вариант 1.

K ∧ L ∧ M = 1, тогда K, L, M = 1, а ¬L ∧ M ∧ N = 0. N любое, то есть 2 решения.

Вариант 2.

¬L ∧ M ∧ N = 1, тогда N, M = 1; L = 0, K любое, то есть 2 решения.

Следовательно, ответ 4.

Ответ: 4

A, B и С — целые числа, для которых истинно высказывание

¬ (А = B) ∧ ((A > B)→(B > C)) ∧ ((B > A)→(С > B)).

Чему равно В, если A = 45 и C = 43?

Решение.

Обратим внимание, что это сложное высказывание состоит из трех простых

1) ¬(А = B); (A > B)→(B > C); (B > A)→(С > B);

2) эти простые высказывания связаны операцией ∧ (И, конъюнкция), то есть, они должны выполняться одновременно;

3) из ¬(А = B)=1 сразу следует, что А B;

4) предположим, что A > B, тогда из второго условия получаем 1→(B > C)=1; это выражение может быть истинно тогда и только тогда, когда B > C = 1;

5) поэтому имеем A > B > C, этому условию соответствует только число 44;

6) на всякий случай проверим и вариант A 0 →(B > C)=1;

это выражение истинно при любом B; теперь смотрим третье условие получаем

это выражение может быть истинно тогда и только тогда, когда C > B, и тут мы получили противоречие, потому что нет такого числа B, для которого C > B > A.

Ответ: 44.

Ответ: 44

Составьте таблицу истинности для логической функции

X = (А ↔ B) ∨ ¬(A → (B ∨ C))

в которой столбец значений аргумента А представляет собой двоичную запись числа 27, столбец значений аргумента В — числа 77, столбец значений аргумента С — числа 120. Число в столбце записывается сверху вниз от старшего разряда к младшему(включая нулевой набор). Переведите полученную двоичную запись значений функции X в десятичную систему счисления.

Решение.

Запишем уравнение, используя более простые обозначения операций:

1) это выражение с тремя переменными, поэтому в таблице истинности будет строчек; следовательно, двоичная запись чисел, по которым строятся столбцы таблицы А, В и С, должна состоять из 8 цифр

2) переведем числа 27, 77 и 120 в двоичную систему, сразу дополняя запись до 8 знаков нулями в начале чисел

3) вряд ли вы сможете сразу написать значения функции Х для каждой комбинации, поэтому удобно добавить в таблицу дополнительные столбцы для расчета промежуточных результатов (см. таблицу ниже)

X 0
А В С
0 0
0 1 1
0 0 1
1 0 1
1 1 1
0 1 0
1 0 0
1 1 0

4) заполняем столбцы таблицы:

А В С X
0 0 0 1 0 1 0 1
0 1 1 0 1 1 0 0
0 0 1 1 1 1 0 1
1 0 1 0 1 1 0 0
1 1 1 1 1 1 0 1
0 1 0 0 1 1 0 0
1 0 0 0 0 0 1 1
1 1 0 1 1 1 0 1

значение равно 1 только в тех строчках, где А = В

значение равно 1 в тех строчках, где либо В либо С = 1

значение равно 0 только в тех строчках, где А = 1 и В + С = 0

значение — это инверсия предыдущего столбца (0 заменяется на 1, а 1 – на 0)

результат Х (последний столбец) — это логическая сумма двух столбцов и

5) чтобы получить ответ, выписываем биты из столбца Х сверху вниз:

6) переводим это число в десятичную систему:

Ответ: 171

Каково наибольшее целое число X, при котором истинно высказывание (10 (X+1)·(X+2))?

Решение.

Уравнение является операцией импликации между двумя отношениями:

1) Конечно, здесь можно применить тот же способ, что и в примере 2208, однако при этом понадобится решать квадратные уравнения (не хочется…);

2) Заметим, что по условию нас интересуют только целые числа, поэтому можно попытаться как─то преобразовать исходное выражение, получив равносильное высказывание (точные значения корней нас совершенно не интересуют!);

3) Рассмотрим неравенство : очевидно, что может быть как положительным, так и отрицательным числом;

4) Легко проверить, что в области высказывание истинно при всех целых , а в области — при всех целых (чтобы не запутаться, удобнее использовать нестрогие неравенства, и , вместо и );

5) Поэтому для целых можно заменить на равносильное выражение

6) область истинности выражения — объединение двух бесконечных интервалов;

7) Теперь рассмотрим второе неравенство : очевидно, что так же может быть как положительным, так и отрицательным числом;

8) В области высказывание истинно при всех целых , а в области — при всех целых , поэтому для целых можно заменить на равносильное выражение

9) область истинности выражения — закрытый интервал;

10) Заданное выражение истинно везде, кроме областей, где и ;

11) Обратите внимание, что значение уже не подходит, потому что там и , то есть импликация дает 0;

12) При подставлении 2, (10 (2+1) · (2+2)), или 0 → 0 что удовлетворяет условию.

Таким образом, ответ 2.

Ответ: 2

Каково наибольшее целое число X, при котором истинно высказывание

(50 (X+1)·(X+1))?

Решение.

Применим преобразование импликации и преобразуем выражение:

(50 (X+1)·(X+1)) ⇔ ¬(X 2 > 50) ∨ ((X+1) 2) ∨ (|X+1|).

Логическое ИЛИ истинно когда истинно хотя бы одно логическое высказывание. Решив оба неравенства и учитывая, что видим, что наибольшее целое число, при котором выполняется хотя бы одно из них - 7 (на рисунке жёлтым изображено положительное решение второго неравенства, синим - первого).

Ответ: 7

Укажите значения переменных К, L, M, N, при которых логическое выражение

(¬(М ∨ L) ∧ К) → (¬К ∧ ¬М ∨ N)

ложно. Ответ запишите в виде строки из 4 символов: значений переменных К, L, М и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что К=1, L=1, M=0, N=1.

Решение.

Дублирует задание 3584.

Ответ: 1000

(¬K ∨ M) → (¬L ∨ M ∨ N)

Решение.

Применим преобразование импликации:

(K ∧ ¬M) ∨ (¬L ∨ M ∨ N) = 0

Применим отрицание к обоим частям уравнения:

(¬K ∨ M) ∧ L ∧ ¬M ∧ ¬N = 1

Преобразуем:

(¬K ∧ L ∨ M ∧ L) ∧ ¬M ∧ ¬N = 1

Следовательно, M = 0, N = 0, рассмотрим теперь (¬K ∧ L ∨ M ∧ L):

из того, что M = 0, N = 0 следует, что M ∧ L = 0, тогда ¬K ∧ L = 1, то есть K = 0, L = 1.

Ответ: 0100

Укажите значения переменных K, L, M, N, при которых логическое выражение

(¬(M ∨ L) ∧ K) → ((¬K ∧ ¬M) ∨ N)

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Решение.

Запишем уравнение, используя более простые обозначения операций (условие «выражение ложно» означает, что оно равно логическому нулю):

1) из формулировки условия следует, что выражение должно быть ложно только для одного набора переменных

2) из таблицы истинности операции «импликация» следует, что это выражение ложно тогда и только тогда, когда одновременно

3) первое равенство (логическое произведение равно 1) выполняется тогда и только тогда, когда и ; отсюда следует (логическая сумма равна нулю), что может быть только при ; таким образом, три переменных мы уже определили

4) из второго условия, , при и получаем .

Дублирует задание

Ответ: 1000

Укажите значения логических переменных Р, Q, S, Т, при которых логическое выражение

(Р ∨ ¬Q) ∨ (Q → (S ∨ Т)) ложно.

Ответ запишите в виде строки из четырех символов: значений переменных Р, Q, S, T (в указанном порядке).

Решение.

(1) (Р ∨ ¬Q) = 0

(2) (Q → (S ∨ Т)) = 0

(1) (Р ∨ ¬Q) = 0 => P = 0, Q = 1.

(2) (Q → (S ∨ Т)) = 0 Применим преобразование импликации:

¬Q ∨ S ∨ Т = 0 => S = 0, T = 0.

Ответ: 0100

Укажите значения переменных K, L, M, N, при которых логическое выражение

(K → M) ∨ (L ∧ K) ∨ ¬N

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Решение.

Логическое "ИЛИ" ложно тогда и только тогда, когда ложны оба утверждения.

(K → M) = 0, (L ∧ K) ∨ ¬N = 0.

Применим преобразование импликации для первого выражения:

¬K ∨ M = 0 => K = 1, M = 0.

Рассмотрим второе выражение:

(L ∧ K) ∨ ¬N = 0 (см. результат первого выражения) => L ∨ ¬N = 0 => L = 0, N = 1.

Ответ: 1001.

Ответ: 1001

Укажите значения переменных K, L, M, N, при которых логическое выражение

(K → M) ∧ (K → ¬M) ∧ (¬K → (M ∧ ¬L ∧ N))

истинно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Решение.

Логическое "И" истинно тогда и только тогда, когда истинны оба утверждения.

1) (K → M) = 1 Применим преобразование импликации: ¬K ∨ M = 1

2) (K → ¬M) = 1 Применим преобразование импликации: ¬K ∨ ¬M = 1

Отсюда следует, что K = 0.

3) (¬K → (M ∧ ¬L ∧ N)) = 1 Применим преобразование импликации: K ∨ (M ∧ ¬L ∧ N) = 1 из того что K = 0 получаем.

По завершению года оказалось, что только одно из трех предположений истинно. Какие подразделения получили по итогам года прибыль?

Решение. Запишем предположения из условия задачи в виде логических высказываний: «Получение прибыли подразделением B не является необходимым условием для получения

прибыли подразделением A »: F 1 (A , B , C ) = A → B

«Получение прибыли хотя бы одним подразделений B и C не является достаточным для получения прибыли подразделением A »: F 2 (A , B , C ) = (B + C ) → A

«Подразделения A и B не получат прибыль одновременно»: F 3 (A , B , C ) = A B

Из условия известно, что только одно из трех предположений истинно. Это значит, что мы должны найти какое из трех следующих логических выражений не является тождественно ложным:

1) F 1 F 2 F 3

2) F 1 F 2 F 3

3) F 1 F 2 F 3

1) (A → B) ((B + C) → A) (A ↔ B) = A B (B C + A) (A B + A B) = 0

2) (A → B) ((B + C) → A) (A ↔ B) = (A + B) (A B + A C) (A B + A B) = A B C

3) (A → B) ((B + C) → A) (A B) = (A + B) (B C + A) (A B + A B) = 0

Следовательно, по итогам годы истинным оказалось второе предположение, а первое и третье – ложными.

A = 0

F1 F2 F3 = A B C = 1

в том и только в том случае, когда B = 0 .

C = 1

Следовательно, что прибыль получит подразделение C , а подразделения A и B прибыль не получат.

Решение логических уравнений

В текстах государственного централизованного тестирования есть задание (А8), в котором предлагается найти корень логического уравнения. Давайте разберем способы решения подобных заданий на примере.

Найти корень логического уравнения: (A + B )(X AB ) = B + X → A .

Первый способ решения – построение таблицы истинности. Построим таблицы истинности правой и левой части уравнения и посмотрим, при каком X , значения в последних столбцах этих таблиц совпадут.

F1 (A, B, X ) = (A + B)(X AB)

A + B

(A + B)(X AB)

F 1 (A , B , X )

F2 (A, B, X ) = B + X → A

X → A

F 2 (A , B , X )

X → A

X → A

Сравним полученные таблицы истинности и выберем те строки, в которых значения F 1 (A , B , X ) и F 2 (A , B , X ) совпадают.

F 1 (A , B , X )

F 2 (A , B , X )

Перепишем только выбранные строки, оставив только столбцы аргументов. Посмотрим на переменную X как на функцию от A и B .

Очевидно, что X = B → A .

Второй способ решения – заменить знак равенства в уравнении на знак эквиваленции, а затем упростить полученное логическое уравнение.

Для облегчения дальнейшей работы предварительно упростим правую и левую части логического уравнения и найдем их отрицания:

F1 = (A + B)(X AB) = A + B + (X ↔ AB) = A B + X A B + X A + X B

F1 = (A + B)(X AB) = (A + B)(X A + X B + X A B) = X A B + X A B + X A B

F2 = B + X → A = B (X → A) = B (X + A) = X B + A B F2 = B + X → A = B + X + A = B + X A

Заменим в нашем логическом уравнении знак равенства на знак эквивалентности:

F1 ↔ F2 = F1 F2 + F1 F2 = (A B + X A B + X A + X B) (X B + A B) +

+ (X A B + X A B + X A B) (B + X A) =

= (X A B + X B + X A B) + (X A B + X A B) =

Перегруппируем логические слагаемые данного выражения, вынеся за скобку множители X и X .

X (A B) + X (B + AB) = X (A B) + X (B + A) =

Обозначим T = A B , тогда

X T + X T = X ↔ T .

Следовательно, чтобы логическое уравнение имеет решение: X = A B = B + A = B → A .

Логические элементы ЭВМ. Построение функциональных схем

Математическая логика с развитием ВТ оказалась в тесной взаимосвязи с вопросами конструирования и программирования вычислительной техники. Алгебра логики нашла широкое применение первоначально при разработке релейно-контактных схем . Первым фундаментальным исследованием, обратившим внимание инженеров, занимавшихся проектированием ЭВМ, на возможность анализа электрических цепей с помощью булевой алгебры была опубликована в декабре 1938 года статья американца Клода Шеннона «Символический анализ релейно-контактных схем». После этой статьи проектирование ЭВМ не обходилось без применения булевой алгебры.

Логический элемент - это схема, реализующая логические операции дизъюнкции, конъюнкции и инверсии. Рассмотрим реализацию логических элементов через электрические релейно-контактные схемы, знакомые вам из школьного курса физики.

Последовательное соединение контактов

Параллельное соединение контактов

Составим таблицу зависимостей состояния цепей от всевозможных состояний контактов. Введем обозначения: 1 – контакт замкнут, ток в цепи есть; 0 – контакт разомкнут, тока в цепи нет.

Состояние цепи с

Состояние цепи с параллельным

последовательным соединением

соединением

Как видно, цепь с последовательным соединением соответствует логической операции конъюнкция, так как ток в цепи появляется только при одновременном замыкании контактов A и B . Цепь с параллельным соединением соответствует логической операции дизъюнкция, так как ток в цепи отсутствует только в момент, когда оба контакта разомкнуты.

Логическая операция инверсии реализуется через контактную схему электромагнитного реле, принцип которого изучается в школьном курсе физики. Контакт x разомкнут, когда x замкнут, и наоборот.

Использование релейно-контактных элементов для построения логических схем вычислительных машин не оправдало себя ввиду низкой надежности, больших габаритов, большого энергопотребления и низкого быстродействия. Появление электронных приборов (вакуумных и полупроводниковых) создало возможность построения логических элементов с быстродействием от 1 миллиона переключений в секунду и выше. Логические элементы на полупроводниках работают в режиме ключа аналогично электромагнитному реле. Вся теория, изложенная для контактных схем, переносится на полупроводниковые элементы. Логические элементы на полупроводниках характеризуются не состоянием контактов, а наличием сигналов на входе и выходе.

Рассмотрим логические элементы, реализующие основные логические операции:

Инвертор - реализует операцию отрицания или инверсию. У

инвертора один вход и один выход. Сигнал на выходе появляется

тогда, когда на входе его нет, и наоборот.

Конъюнктор -

X1 X 2 ... X n

реализует операцию конъюнкции.

У конъюнктора

один выход и не менее двух входов. Сигнал на

выходе появляется тогда и только тогда, когда на

все входы поданы сигналы.

X 2 + ... X n

Дизъюнктор - реализует операцию дизъюнкции. У

дизъюнктора один выход и не менее двух

Сигнал на выходе не появляется тогда и только тогда,

когда на все входы не поданы сигналы.

Построить

функциональную

F(X , Y, Z) = X (Y + Z)

X + Z

схему, соответствующую функции:

& F(X , Y , Z )

Решение задач с использованием конъюнктивно-нормальной

и дизъюнктивно-нормальной форм

В задачниках по логике часто встречаются стандартные задачи, где нужно записать функцию, реализующую релейно-контактную схему, упростить ее и построить таблицу истинности для этой функции. А как решать обратную задачу? Дана произвольная таблица истинности, нужно построить функциональную или релейно-контактную схему. Этим вопросом мы и займемся сегодня.

Любую функцию алгебры логики можно представить комбинацией трех операций: конъюнкции, дизъюнкции и инверсии. Давайте разберемся, как это делается. Для этого запишем несколько определений.

Минтерм - это функция, образованная конъюнкцией некоторого числа переменных или их отрицаний. Минтерм принимает значение 1 при единственном из всех возможных наборов

аргументов, и значение 0 при всех остальных. Пример: x 1 x 2 x 3 x 4 .

Макстерм - это функция, образованная дизъюнкцией некоторого числа переменных или их отрицаний. Макстерм принимает значение 0 в одном из возможных наборов, и 1 при всех других.

Пример: x 1 + x 2 + x 3 .

Функция в дизъюнктивной нормальной форме (ДНФ) является логической суммой минтермов.

Пример: x 1 x 2 + x 1 x 2 + x 1 x 2 x 3 .

Конъюнктивная нормальная форма (КНФ) является логическим произведением элементарных дизъюнкций (макстермов).

Пример: (x 1 + x 2 + x 3 ) (x 1 + x 2 ) .

Совершенной дизъюнктивно-нормальной формой называется ДНФ, в каждом минтерме которой присутствуют все переменные или их отрицания.

Пример: x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3

Совершенной конъюктивно-нормальной формой называется КНФ, в каждом макстерме которой присутствуют все переменные или их отрицания.

Пример: (x 1 + x 2 + x 3 ) (x 1 + x 2 + x 3 )

Запись логической функции по таблице

Любая логическая функция может быть выражена в виде СДНФ или СКНФ. В качестве примера рассмотрим функцию f , представленную в таблице.

f(x1 , x2 , x3 )

Функции G0, G1, G4, G5, G7 – это минтермы (см. определение). Каждая из этих функций является произведением трех переменных или их инверсий и принимает значение 1 только в одной ситуации. Видно, что для того, чтобы получить 1 в значении функции f, нужен один минтерм. Следовательно, количество минтермов, составляющих СДНФ этой функции, равно количеству единиц в значении функции: f= G0+G1+G4+G5+G7. Таким образом, СДНФ имеет вид:

f (x 1, x 2 , x 3 ) = x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3.

Аналогично можно построить СКНФ. Количество сомножителей равно количеству нулей в значениях функции:

f (x 1, x 2 , x 3 ) = (x 1 + x 2 + x 3 ) (x 1 + x 2 + x 3 ) (x 1 + x 2 + x 3 ) .

Таким образом, можно записать в виде формулы любую логическую функцию, заданную в виде таблицы.

Алгоритм построения СДНФ по таблице истинности

Дана таблица истинности некоторой функции. Для построения СДНФ необходимо выполнить следующую последовательность шагов:

1. Выбрать все строки таблицы, в которых функция принимает значение 1.

2. Каждой такой строке поставить в соответствие конъюнкцию всех аргументов или их инверсий (минтерм). При этом аргумент, принимающий значение 0, входит в минтерм с отрицанием, а значение 1 – без отрицания.

3. Наконец, образуем дизъюнкцию всех полученных минтермов. Количество минтермов должно совпадать с количеством единиц логической функции.

Алгоритм построения СКНФ по таблице истинности

Дана таблица истинности некоторой функции. Для построения СКНФ необходимо выполнить следующую последовательность шагов:

1. Выбрать все строки таблицы, в которых функция принимает значение 0.

2. Каждой такой строке поставить в соответствие дизъюнкцию всех аргументов или их инверсий (макстерм). При этом аргумент, принимающий значение 1, входит в макстерм с отрицанием, а значение 1 – без отрицания.

3. Наконец, образуем конъюнкцию всех полученных макстермов. Количество макстермов должно совпадать с количеством нулей логической функции.

Если условиться из двух форм (СДНФ или СКНФ) отдавать предпочтение той, которая содержит меньше букв, то СДНФ предпочтительней, если среди значений функции таблицы истинности меньше единиц, СКНФ – если меньше нулей.

Пример. Дана таблица истинности логической функции от трех переменных. Построить логическую формулу, реализующую эту функцию.

F(A, B, C)

Выберем те строки в данной таблице истинности, в которых значения функции равна 0.

F(A, B, C) = (A + B + C) (A + B + C)

Проверим выведенную функцию, составив таблицу истинности.

Сравнив начальную и итоговую таблицу истинности можно сделать вывод, что логическая функция построена правильно.

Решение задач

1. Три преподавателя отбирают задачи для олимпиады. На выбор предлагается несколько задач. По каждой задаче каждый из преподавателей высказывает свое мнение: легкая (0) или трудная (1) задача. Задача включается в олимпиадное задание, если не менее двух преподавателей отметили ее как трудную, но если все три преподавателя считают ее трудной, то такая задача не включается в олимпиадное задание как слишком сложная. Составьте логическую схему устройства, которое будет выдавать на выходе 1, если задача включается в олимпиадное задание, и 0, если не включается.

Построим таблицу истинности искомой функции. У нас есть три входные переменные (три преподавателя). Следовательно, искомая функция будет функцией от трех переменных.

Анализируя условие задачи, получаем следующую таблицу истинности:

Строим СДНФ. F(A, B, C) = ABC + ABC + ABC

Теперь строим логическую схему этой функции.

B & 1 F(A,B,C)

2. Городская олимпиада по базовому курсу информатики, 2007 год. Постройте схему электрической цепи для подъезда трехэтажного дома такую, чтобы выключателем на любом этаже можно было бы включить или выключить свет во всем доме.

Итак, у нас есть три выключателя, которыми мы должны включать и выключать свет. У каждого выключателя есть два состояния: верхнее (0) и нижнее (1). Предположим, что если все три выключателя в положении 0, свет в подъезде выключен. Тогда при переводе любого из трех выключателей в положение 1 свет в подъезде должен загореться. Очевидно, что при переводе любого другого выключателя в положение 1, свет в подъезде выключится. Если третий выключатель перевести в положение 1, свет в подъезде загорится. Строим таблицу истинности.

Тогда, F(A, B, C) = ABC + ABC + ABC + ABC .

3. Условие изменения

значения логической функции

F(A, B, C) = C →

A + B

одновременном изменении аргументов B и C равно:

A → (B C)

(B C) → A

A(B C)

4) (B C) → A

A → (B C)

Примечание. Для успешного решения данной задачи вспомним следующие логические формулы:

x → y = x + y x y = x y + x y

x ↔ y = x y + x y

Нам дана логическая функция от трех переменных F 1 (A , B , C ) = C → A + B = C + A B .

Изменим одновременно переменные B и C : F 2 (A , B , C ) = F 1 (A , B , C ) = C + A B . Построим таблицы истинности этих двух функций:

Анализируем полученную таблицу. Из восьми строк таблицы лишь в двух (2-й и 3-й) функция не изменяет своего значения. Обратите внимание, что в этих строках переменная A не изменяет своего значения на противоположное, а переменные B и C – изменяют.

Строим СКНФ функции по этим строкам:

F3 (A, B, C) = (A + B + C) (A + B C) = A + AB + AC + AB + BC + AC + B C = .

A + (B ↔ C) = A + B C = (B C) → A

Следовательно, искомый ответ – 4.

4. Условие изменения значения логической функции F (A , B , C ) = C + AB при одновременном изменении аргументов A и B равно:

1) C + (A B)

C + (A B)

C(A B)

4) C(A B)

C → (A B)

F 1 (A , B ,C ) =

C + AB

F 2 (A , B ,C ) = F 1 (

C ) = A

Строим таблицу истинности.

Анализируем полученную таблицу. Из восьми строк таблицы лишь в двух (1-й и 7-й) функция меняет свое значение. Обратите внимание, что в этих строках переменная С не меняет свое значение, а переменные A и B – меняют.

Строим СДНФ функции по этим строкам:

F3 (A, B, C) = A B C + A B C = C(A B + A B) = C(A ↔ B) = C + (A B)

Следовательно, искомый ответ – 2.

Использованная литература

1. Шапиро С.И. Решение логических и игровых задач (логико-психологические этюды). – М.: Радио и связь, 1984. – 152 с.

2. Шоломов Л.А. Основы теории дискретных логических и вычислительных устройств. – М.: Наука. Гл. ред. физ. - мат. лит., 1980. - 400 с.

3. Пухальский Г.И., Новосельцева Т.Я. Проектирование дискретных устройств на интегральных микросхемах.: Справочник. – М.: Радио и связь, 1990.

Размер: px

Начинать показ со страницы:

Транскрипт

1 Решение логических уравнений и систем логических уравнений Пусть F(x, x2, xn) логическая функция от n переменных. Логическое уравнение имеет вид: F(x, x2, xn) = С, где константа С имеет значение или. Логическое уравнение может иметь от до 2 n различных решений. Если С равно, то решениями являются все те наборы переменных из таблицы истинности, на которых функция F принимает значение истина (). Оставшиеся наборы являются решениями уравнения при C, равном нулю. Можно всегда рассматривать только уравнения вида: F(x, x2, xn) = Действительно, пусть задано уравнение: F(x, x2, xn) = В этом случае можно перейти к эквивалентному уравнению: F(x, x2, xn) = Рассмотрим систему из k логических уравнений: F(x, x2, xn) = F2(x, x2, xn) = { Fk(x, x2, xn) = Решением системы является набор переменных, на котором выполняются все уравнения системы. В терминах логических функций для получения решения системы логических уравнений следует найти набор, на котором истинна логическая функция Ф, представляющая конъюнкцию исходных функций F: Ф = F F2 Fk Если число переменных невелико, например, менее 5, то нетрудно построить таблицу истинности для функции Ф, что позволяет сказать, сколько решений имеет система и каковы наборы, дающие решения. В некоторых задачах ЕГЭ по нахождению решений системы логических уравнений число переменных доходит до значения. Тогда построить таблицу истинности становится практически неразрешимой задачей. Для решения задачи требуется другой подход. Для произвольной системы уравнений не существует общего способа, отличного от перебора, позволяющего решать такие задачи. В предлагаемых на экзамене задачах решение обычно основано на учете специфики системы уравнений. Однако, повторю, что кроме перебора всех вариантов набора переменных, общего способа решения задачи нет. Решение нужно строить исходя из представленной системы. Часто полезно провести предварительное упрощение системы уравнений, используя известные законы логики. Другой полезный прием решения этой задачи состоит в следующем. Нам интересны не все наборы, а только те, на которых функция Ф имеет значение. Вместо построения полной таблицы истинности будем строить ее аналог - бинарное дерево решений. Каждая ветвь этого дерева соответствует

2 одному решению и задает набор, на котором функция Ф имеет значение. Число ветвей в дереве решений совпадает с числом решений системы уравнений. Что такое бинарное дерево решений и как оно строится, поясню на примерах нескольких задач. Задача Сколько существует различных наборов значений логических переменных x, x2, x3, x4, x5, y, y2, y3, y4, y5, которые удовлетворяют системе из двух уравнений? (x x2) /\ (x2 x3) /\ (x3 x4) /\ (x4 x5) = { (y y2) /\ (y2 y3) /\ (y3 y4) /\ (y4 y5) = Ответ: Система имеет 36 различных решений. Система уравнений включает два уравнения. Найдем число решений для первого уравнения, зависящего от 5 переменных x, x2, x5. Первое уравнение можно в свою очередь рассматривать как систему из 5 уравнений. Как было показано, система уравнений фактически представляет конъюнкцию логических функций. Справедливо и обратное утверждение, - конъюнкцию условий можно рассматривать как систему уравнений. Построим дерево решений для импликации (x x2) - первого члена конъюнкции, который можно рассматривать как первое уравнение. Вот как выглядит графическое изображение этого дерева: X X2 Дерево состоит из двух уровней по числу переменных уравнения. Первый уровень описывает первую переменную X. Две ветви этого уровня отражают возможные значения этой переменной и. На втором уровне ветви дерева отражают только те возможные значения переменной X2, для которых уравнение принимает значение истина. Поскольку уравнение задает импликацию, то ветвь, на которой X имеет значение, требует, чтобы на этой ветви X2 имело значение. Ветвь, на которой X имеет значение, порождает две ветви со значениями X2, равными и. Построенное дерево задает три решения, на которых импликация X X2 принимает значение. На каждой ветви выписан соответствующий набор значений переменных, дающий решение уравнения. Вот эти наборы: {(,), (,), (,)} Продолжим построение дерева решений, добавляя следующее уравнение, следующую импликацию X2 X3. Специфика нашей системы уравнений в том, что каждое новое уравнение системы использует одну переменную из предыдущего уравнения, добавляя одну новую переменную. Поскольку переменная X2 уже имеет значения на дереве, то на всех ветвях, где переменная X2 имеет значение, переменная X3 также будет иметь значение. Для таких ветвей построение дерева продолжается на следующий уровень, но новые ветви не появляются. Единственная ветвь, где переменная X2 имеет значение, даст разветвление на две ветви, где переменная X3 получит значения и. Таким образом, каждое добавление нового уравнения, учитывая его специфику, добавляет одно решение.

3 Исходное первое уравнение: (x x2) /\ (x2 x3) /\ (x3 x4) /\ (x4 x5) = имеет 6 решений. Вот как выглядит полное дерево решений для этого уравнения: X X2 X3 X4 X5 Второе уравнение нашей системы аналогично первому: (y y2) /\ (y2 y3) /\ (y3 y4) /\ (y4 y5) = Разница лишь в том, что в уравнении используются переменные Y. Это уравнение также имеет 6 решений. Поскольку каждое решение для переменных Xi может быть скомбинировано с каждым решением для переменных Yj, то общее число решений равно 36. Заметьте, построенное дерево решений дает не только число решений (по числу ветвей), но и сами решения, выписанные на каждой ветви дерева. Задача 2 Сколько существует различных наборов значений логических переменных x, x2, x3, x4, x5, y, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям? (x x2) ^ (x2 x3) ^ (x3 x4) ^ (x4 x5) = {(y y2) ^ (y2 y3) ^ (y3 y4) ^ (y4 y5) = (x y) = Ответ: 3 Эта задача является модификацией предыдущей задачи. Разница в том, что добавляется еще одно уравнение, связывающее переменные X и Y. Из уравнения X Y следует, что когда X имеет значение (одно такое решение существует), то и Y имеет значение. Таким образом, существует один набор, на котором

4 X и Y имеют значения. При X, равном, Y может иметь любое значение, как, так и. Поэтому каждому набору с X, равном, а таких наборов 5, соответствует все 6 наборов с переменными Y. Следовательно, общее число решений равно 3. Задача 3 Сколько решений имеет уравнение: (X X2) (X2 X3) (X3 X4) (X4 X5) (X5 X) = Ответ: 2 Вспоминания основные эквивалентности, запишем наше уравнение в виде: (X X2) (X2 X3) (X3 X4) (X4 X5) (X5 X) = Циклическая цепочка импликаций означает тождественность переменных, так что наше уравнение эквивалентно уравнению: X X2 X3 X4 X5 = Это уравнение имеет два решения, когда все Xi равны либо, либо. Задача 4 Сколько решений имеет уравнение: (X X2) (X2 X3) (X3 X4) (X4 X2) (X4 X5) = Ответ: 4 Так же, как и в задаче 2, от циклических импликаций перейдем к тождествам, переписав уравнение в виде: (X X2) (X2 X3 X4) (X4 X5) = Построим дерево решений для этого уравнения: X X2 X3 X4 X5

5 Задача 4 Сколько решений имеет следующая система уравнений? Ответ: 64 ((X X2) (X3 X4)) ((X X2) (X3 X4)) = ((X3 X4) (X5 X6)) ((X3 X4) (X5 X6)) = ((X5 X6) (X7 X8)) ((X5 X6) (X7 X8)) = {((X7 X8) (X9 X)) ((X7 X8) (X9 X)) = Перейдем от переменных к 5 переменным, введя следующую замену переменных: Y = (X X2); Y2 = (X3 X4); Y3 = (X5 X6); Y4 = (X7 X8); Y5 = (X9 X); Тогда первое уравнение примет вид: (Y Y2) (Y Y2) = Уравнение можно упростить, записав его в виде: (Y Y2) = Переходя к традиционной форме, запишем систему после упрощений в виде: (Y Y2) = (Y2 Y3) = { (Y3 Y4) = (Y4 Y5) = Дерево решений для этой системы простое и состоит из двух ветвей с чередующимися значениями переменных: Y Y2 Y3 Y4 Y5 Возвращаясь к исходным переменным X, заметим, что каждому значению переменной Y соответствует 2 значения переменных X, поэтому каждое решение в переменных Yпорождает 2 5 решений в переменных X. Две ветви порождают 2 * 2 5 решений, так что общее число решений равно 64. Как видите, каждая задача на решение системы уравнений требует своего подхода. Общим приемом является выполнение эквивалентных преобразований для упрощения уравнений.

6 Общим приемом является и построение деревьев решений. Применяемый подход частично напоминает построение таблицы истинности с той особенностью, что строятся не все наборы возможных значений переменных, а лишь те, на которых функция принимает значение (истина). Часто в предлагаемых задачах нет необходимости в построении полного дерева решений, поскольку уже на начальном этапе удается установить закономерность появления новых ветвей на каждом следующем уровне, как это сделано, например, в задаче.


Путилов Виктор Васильевич МАОУ СОШ 46 Системы логических уравнений. Оглавление Замечание о замене переменных.... Задачи содержащие импликацию или ее эквивалентную запись....2 Наличие дополнительного условия...6

Решение системы логических уравнений. Сколько решений имеет уравнение A BB C C D = 0 Количество наборов переменных равно =. Можно составить таблицу истинности и проверить, сколько наборов соответствуют

Построение и анализ таблиц истинности логических выражений. ЕГЭ 2015 2 (базовый уровень, время 3 мин) Пример Р-13. Каждое логическое выражение A и B зависит от одного и того же набора из 5 переменных.

Н Б Рогов Как научиться решать задание B15 ЕГЭ по информатике (системы логических уравнений) за 180+ минут Материалы для занятий Раздел в сети: http://basicschoolru/?page=eam_info_b15 Теоретическое введение:

B4 Тема: Преобразование логических выражений. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической логике (,), неудобны, интуитивно непонятны

Математика и математическое моделирование УДК 004.023 Семенов Сергей Максимович Владивостокский государственный университет экономики и сервиса Россия. Владивосток Об одном способе решения систем логических

B4 (высокий уровень, время 1 мин) Тема: Преобразование логических выражений. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической логике (,),

B0 (высокий уровень, время 0 мин) Тема: Преобразование логических выражений. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической логике (,),

19022017 Битовые операции в задачах КИМ ЕГЭ по информатике Часть II КЮ Поляков, дтн, учитель информатики ГБОУ СОШ 163, г Санкт-Петербург В данной статье рассматриваются задачи следующего типа впервые эти

Самостоятельная работа по теме «Способы задания логических функций» 1. Вычислить значение функции F(x, y, z) = на наборе переменных (1, 1, 0). 3. Определить эквивалентность функций F(x, y, z) = и G(x,

Логика это наука, изучающая методы установления истинности или ложности одних высказываний на основе истинности или ложности других высказываний. Высказывание (суждение) некоторое предложение, которое

B высокий уровень, время 0 мин) К. Поляков, 009-0 Тема: Преобразование логических выражений. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической

Задача 1: Дан фрагмент таблицы истинности выражения F: Каким выражением может быть F? X Y Z F 0 0 0 0 0 0 1 0 1 1 1 1 1) X /\ Y /\ Z 2) X \/ Y \/ Z 3) X \/ Y \/ Z 4) X /\ Y /\ Z Рассмотрим первое выражение

ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ (продолжение) Число булевых функций от n переменных находится по формуле: P2 (n) = 2 2n Логических функций двух переменных 6 Наиболее часто употребляются следующие функции: f (x,

Решения задач по двузначной логике Ф.Г. Кораблев Задача 1. Для функции f(x, y, z) = ((x y) (x z)) (z x) найти существенные и фиктивные переменные, произвести операцию исключения фиктивных переменных. Решение.

051216 Битовые операции в задачах КИМ ЕГЭ по информатике Часть II КЮ Поляков, дтн, учитель информатики ГБОУ СОШ 163, г Санкт-Петербург В данной статье рассматриваются задачи следующего типа впервые эти

Мирончик Е.А., учитель информатики, г. Новокузнецк Решение задания ЕГЭ-18 с битовыми операциями Описанный метод демонстрирует способ решения на основе тождественных переходов, т.е. знак равно «работает»

Тема: Основные понятия математической логики. Примерные вопросы Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической логике (,), неудобны, интуитивно

Часть 1 1. Укажите, какое логическое выражение равносильно выражению A /\ (B \/ C). 1) A \/ B \/ C 2) A /\ B /\ C 3) A /\ B /\ C 4) A /\ B /\ C Решение: Применяя формулу де Моргана (B \/ C) = B /\ C и

Глинка Н.В. Используемые обозначения Отрицание Умножение (конъюнкция) Сложение (дизъюнкция) Импликация Эквивалентность Примеры задач до 2010 учебного года Сколько различных решений имеет уравнение ((K

Битовые операции в задачах КИМ по информатике Типы задач В данном вебинаре рассматриваются задачи следующего типа (впервые эти задачи появились в КИМ на ЕГЭ 2015 года): Введжм выражение M & K, обозначающее

Практическая работа 6 Решение логических задач с применением законов алгебры логики Цель работы: закрепление умений преобразовывать логические выражения с использованием законов алгебры логики, вычислять

A10 (базовый уровень, время 1 мин) Тема: Преобразование логических выражений. Формулы де Моргана. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической

Гурская К.А., Ивин В.В., Семёнов С.М. Решение задач математической логики в ЕГЭ по информатике 1 УДК 004.9 Гурская К.А., Ивин В.В., Семёнов С.М. Учебное пособие «Решение задач математической логики в ЕГЭ

ОГЛАВЛЕНИЕ Предисловие............................. 3 Глава 1. Математическая логика................. 4 1. Алгебра высказываний.................. 4 2. Булевы алгебры...................... 12 3. Исчисление

ЛЕКЦИЯ 5 ЛОГИЧЕСКИЕ ОПЕРАЦИИ В ИНФОРМАТИКЕ 1. Математическая логика и информатика 2. Логические выражения и логические операции 3. Построение таблиц истинности и логических функций 4. Законы логики и правила

B5 высокий уровень, время 0 мин) Тема: Преобразование логических выражений. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической логике,), неудобны,

Алгебра логики Алгебра логики формальная логическая теория, раздел математической логики, разработанный в XIX веке английским математиком Джорджем Булем. В алгебре логики используются алгебраические методы

2 (базовый уровень, время мин) Тема: Построение и анализ таблиц истинности логических выражений. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической

A8 (базовый уровень, время 1 мин) Тема: Преобразование логических выражений. Формулы де Моргана. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической

B15 Укажите значения переменных K, L, M, N, при которых логическое выражение (K M) (L K) N ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке).

Основы логики. Логические операции и таблицы истинности Основы логики. Логические операции и таблицы истинности На данной странице будут рассмотрены 6 логических операций: конъюнкция, дизъюнкция, инверсия,

Тождества Булевой алгебры Основная задача математической логики на основании ложности или истинности простых высказываний определить значение сложного высказывания. Логические операции алгебре высказываний

Муниципальное бюджетное общеобразовательное учреждение города Абакана «Средняя общеобразовательная школа 11» Методическая разработка по теме Решение заданий типа 18 ЕГЭ по информатике Атюшкина Марина Валерьевна,

Тема 4. Логические основы ЭВМ 1.ОСНОВНЫЕ СВЕДЕНИЯ ИЗ АЛГЕБРЫ ЛОГИКИ... 1 2. ЗАКОНЫ АЛГЕБРЫ ЛОГИКИ... 4 3. ПОНЯТИЕ О МИНИМИЗАЦИИ ЛОГИЧЕСКИХ ФУНКЦИЙ... 6 4.ТЕХНИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ЛОГИЧЕСКИХ ФУНКЦИЙ...

Тема 9. Логические основы ЭВМ. 1. Логика. Информация, обрабатываемая в ЭВМ, представляется с помощью физических величин, которые могут принимать только два устойчивых состояния и называются «двоичные переменные».

Иррациональные неравенства Неравенства, в которых переменная содержится под знаком корня, называются иррациональными Основным методом решения иррациональных неравенств является метод сведения исходного

26 преобразования, выстроить верную цепочку рассуждений и в последнем действии допустить арифметическую ошибку. Заметим, что при решении этого задания количество только арифметических действий доходит

Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Алгебра Алгебра логики Семушева Алена Сергеевна, МОУ «Лицей» г. Перми, кл. Боркова Ольга Владимировн,

К. Поляков, 009-0 B5 высокий уровень, время 0 мин) Тема: Преобразование логических выражений. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p(= q(Если

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ ÄÈÑÊÐÅÒÍÀß ÌÀÒÅÌÀÒÈÊÀ

A9 (базовый уровень, время 2 мин) Тема: Построение таблиц истинности логических выражений. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической

Мирончик Е.А., МБ НОУ «Лицей», г. Новокузнецк Метод отображения Задание. Сколько решений имеет система: Все уравнения, включенные в систему, однотипны, и в каждое уравнение включено три переменных. Зная

Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Булевы и логические функции Раздел электронного учебника для сопровождения лекции e-mail: melnikov@k66.ru,

Е.В.Просолупов 42. Булева алгебра. Функции алгебры логики 1 Булевы функции Будем рассматривать булевы функции функции, аргументы и значения которых принимают значения истина и ложь. Истину и ложь будем

Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Булевы и логические функции Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Практическая работа 1 Логические операции. Равносильность формул Цель работы: Научиться строить таблицы истинности логических высказываний и преобразовывать формулы, используя основные равносильности Содержание

Говорят, что когда Аристотель придумал логику, он на радостях устроил пир и велел заколоть 40 баранов. С тех пор бараны логику не любят. Основные понятия алгебры логики 10 класс, 2017-2018 учебный год

Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ()

Лекция 2. Конъюнктивные нормальные формы. Имплицента, простая имплицента функции. Сокращенная КНФ функции алгебры логики. Способы построения сокращенной КНФ. Лектор Селезнева Светлана Николаевна selezn@cs.msu.ru

ЛОГИКА ВЫСКАЗЫВАНИЙ Высказывания Высказывание повествовательное предложение, содержание которого можно оценить либо как истинное, либо как ложное. Различают: абсолютно истинные высказывания, абсолютно

Доля П.Г. Харьковский Национальный Университет механико математический факультет Дискретная математика. Конспект лекций. Оглавление 1. Алгебра высказываний и логика. 1.1 Высказывания и логические операции...

Законы алгебры логики Это интересно! Математика и закон де Моргана Как вы запишите математически принадлежность точки x отрезку ? Это можно сделать так: 2 x 5. Это означает, что одновременно должны

Математическая логика и теория алгоритмов Первухин Михаил Александрович Логическое следствие в АВ Говорят, что формула ψ x 1, x n АВ является логическим следствием формул φ 1 (x 1, x n), φ m x 1,

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ

ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ 1. Скобки Пуассона На прошлой лекции вводилось понятие скобки Лагранжа. Это выражение было составлено из частных производных

8 задание ЕГЭ («Знание основных понятий и законов математической логики») ЗАКОНЫ АЛГЕБРЫ ЛОГИКИ Х = Х X /\ Y = Y /\ X X \/ Y = Y \/ X (X /\ Z) \/ (Y /\ Z)=(X \/ Y) /\ Z A\/ = A A/\ = A A/\ =. ЗАКОНЫ АЛГЕБРЫ

ГЛАВА 6 Формализм скобок Пуассона в классической механике 61 Скобки Пуассона Скобки Пуассона Пусть даны две динамические величины две функции канонических переменных и времени t: (и (Скобкой Пуассона

Лабораторная работа АЛГОРИТМ БЕРЛЕКЭМПА-МЕССИ ДЛЯ НАХОЖДЕНИЯ КОЭФФИЦИЕНТОВ ОБРАТНОЙ СВЯЗИ ГЕНЕРАТОРА ПСЕВДОСЛУЧАЙНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ Рассмотрим как можно восстановить полином задающий обратные связи

К.Ю. Поляков, М.А. Ройтберг Системы логических уравнений в задачах ЕГЭ по информатике К.Ю. Поляков, М.А. Ройтберг, 0 http://kpolkov.sp.ru К.Ю. Поляков, М.А. Ройтберг, 0 http://kpolkov.sp.ru Постановка

Битовые операции в задачах КИМ ЕГЭ по информатике К.Ю. Поляков, д.т.н., учитель информатики ГБОУ СОШ 163, г. Санкт-Петербург В данной статье рассматриваются задачи следующего типа (впервые эти задачи появились

Министерство образования Российской федерации Донской государственный технический университет Кафедра «Высшая математика» Задачи по дискретной математике Ростов-на-Дону 2001 УДК 517 Составители: Баранов

Ребята, мы продолжаем изучать большую тему логарифмов, сегодня мы с вами посмотрим, как решать различные уравнения, в которых есть логарифмы. Логарифмическим уравнением, называется уравнение вот такого

A3 (базовый уровень, время 2 мин) Тема: Построение таблиц истинности логических выражений. Про обозначения К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической

Время выполнения 4 часа. ЛАБОРАТОРНАЯ РАБОТА 2 АЛГЕБРА ЛОГИКИ Цель работы Изучить основы алгебры логики. Задачи лабораторной работы В результате прохождения занятия студент должен: 1) знать: определения

Неравенства С С Подготовка к ЕГЭ 0 (материал для лекции для учителей 8040) Прокофьев АА aaprokof@yanderu Основные способы решения: Задачи С Решение неравенства на промежутках Упрощение неравенства и сведение

Приложение 1 ГРУППЫ, КОЛЬЦА, ПОЛЯ Для криптографии алгебра является одним из основных инструментов в теоретических исследованиях и практических построениях криптографических преобразований Поэтому в этом


Решение уравнения 1.Перейти к префиксной форме записи уравнения, заменив обозначения отрицаний на ¬ 2.Построить заголовок таблицы истинности специального вида 3.Заполнить строки таблицы истинности для всех сочетаний А и В, подставляя вместо X - 0 или 1. 4.Сформировать таблицу истинности для X = F (А,B) 5.По таблице истинности определить вид функции X, при необходимости воспользовавшись методами построения СКНФ и СДНФ, которые будут рассмотрены ниже.




Построение таблицы истинности специального вида ¬((А+B)·(X A·B))=¬(B+¬(X A))


Таблица истинности X=F(A, B) ABX Соответствует отрицанию импликации В в А ОТВЕТ:


Комбинационные схемы логических устройств Базисные элементы (ГОСТ): 1 А В Дизъюнкция А В Эквивалентность & А В Конъюнкция M2 А В XOR


Комбинационные схемы логических устройств Базисные элементы (ГОСТ): 1 А В Импликация & А В Элемент Шеффера & А В Коимпликация 1 А В Элемент Вебба




Пример схемы F 1 & 1 & & 1M2 B A


Решение схем 1 Вариант – преобразование схемы в сложное логическое выражение и затем – упрощение его по законам логики. 2 Вариант – построение таблицы истинности а затем, при необходимости, построение через СКНФ или СДНФ (см. ниже). Рассмотрим второй вариант, как более простой и понятный.


Построение таблицы истинности AB A + B + · B B · A + A B A + · ·


Таблица истинности F(A, B) ABX Соответствует отрицанию импликации В в А ОТВЕТ:


СДНФ и СКНФ (определения) Элементарной конъюнкцией называется конъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причем среди переменных могут быть одинаковые Элементарной дизъюнкцией называется дизъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причем среди переменных могут быть одинаковые Всякую дизъюнкцию элементарных конъюнкций назовем дизъюнктивной нормальной формой (ДНФ) Всякую конъюнкцию элементарных дизъюнкций назовем конъюнктивной нормальной формой (ДНФ)


СДНФ и СКНФ (определения) Совершенной дизъюнктивной нормальной формой (СДНФ), называется ДНФ, в которой нет одинаковых элементарных конъюнкций и все конъюнкции состоят из одного и того же набора переменных, в который каждая переменная входит только один раз (возможно с отрицанием). Совершенной конъюнктивной нормальной формой (СКНФ), называется КНФ, в которой нет одинаковых элементарных дизъюнкций и все дизъюнкции состоят из одного и того же набора переменных, в который каждая переменная входит только один раз (возможно с отрицанием).


Алгоритм получения СДНФ по таблице истинности 1.Отметить строки таблицы истинности в последнем столбце которых стоят 1. 2.Выписать для каждой отмеченной строки конъюнкцию всех переменных следующим образом: если значение переменной в данной строке равно 1, то в конъюнкцию включать саму эту переменную, если равно 0, то ее отрицание. 3.Все полученные конъюнкции связать в дизъюнкцию. Алгоритм получения СКНФ по таблице истинности 1.Отметить строки таблицы истинности в последнем столбце которых стоят 0. 2.Выписать для каждой отмеченной строки дизъюнкцию всех переменных следующим образом: если значение переменной в данной строке равно 0, то в конъюнкцию включать саму эту переменную, если равно 1, то ее отрицание. 3.Все полученные дизъюнкции связать в конъюнкцию.


Пример построения СKНФ XY F(X,Y) Отметить нули 2. Дизъюнкции: X + Y 3. Конъюнкция: (X + Y) · (X + Y)



© 2024 skypenguin.ru - Советы по уходу за домашними животными