Что там, в глубинах Вселенной? Придумать рассказ на одну из тем мечты о будущем о тайнах звездного неба что там в глубинах вселенной заранее огромное спасибо Рассказ что там в глубинах вселенной.

Что там, в глубинах Вселенной? Придумать рассказ на одну из тем мечты о будущем о тайнах звездного неба что там в глубинах вселенной заранее огромное спасибо Рассказ что там в глубинах вселенной.

От миниатюрных чёрных дыр до полного искажения материи и понятия пространство-время, от галактик, поглощающих друг друга, до материи, не имеющей массы, которую нельзя ни увидеть, ни вычислить, используя современные технологии и новейшие компьютеры, — таковы лишь некоторые космические секреты, неподдающиеся натиску человеческого разума, в необъятном космосе есть огромное количество необъяснимых загадок, напомним вам о некоторых из них.

КВАЗАРЫ

Яркие маяки светят и сигналят нам от самого далёкого края видимой части Вселенной, что настойчиво напоминает нашим учёным о космическом хаосе и младенческом возрасте нашей родной галактики. Эти сигнальные огни мы называем квазарами, в чью компетенцию входит способность излучать такое количество энергии, которое сопоставимо с сотнями галактик одновременно. Но главный вывод, сделанный мировым сообществом учёных, заключается в том, что квазары есть ни что иное, как чудовищные чёрные дыры в самом сердце бесконечно далёких галактик. Одного из этих космических монстров удалось запечатлеть на фотоплёнку ещё в 1979 году, его кодовое имя ЗС 273.

Квантовая физика объясняет нам, что, противореча собственному внешнему облику, пустые пространства являются целыми виртуальными заводами по производству субатомных частиц, которые беспрерывно там создаются и тут же уничтожаются. Быстрые частицы заполняют каждый кубический сантиметр Вселенной, принося с собой определённое количество энергии, которая, согласно закону относительности, создаёт там антигравитационные силы, пытающиеся разорвать космос на части, расширить его. Но, увы, никто не знает, что же заставляет увеличивать и ускорять такую экспансию Вселенной…

АНТИВЕЩЕСТВО И ЧЁРНЫЕ ДЫРЫ

Теперь коснёмся другой загадки, называемой антиматерия (антивещество). Частицы и молекулы, составляющие обычную материю, из коей состоят все земные и космические вещества и тела, имеют противоположную версию самих себя. К примеру, электроны (основные структурные элементы всякого вещества) несут в себе отрицательный заряд. Но их эквивалент антивещества — позитрон — имеет положительный. Поэтому материя и антиматерия аннигилируют, когда сталкиваются в пространстве, а их массы конвертируются в чистую энергию, согласно уравнению Эйнштейна Е=mс2. Вот поэтому космические межпланетные корабли будущего уже сейчас проектируются с прицелом на энергию антивещества.

Изумление у нас вызывают и миниатюрные чёрные дыры. Если радикально новая теория силы тяготения «бесконечного мира» (braneworld) верна, тогда по всему пространству нашей галактики (а может, и Вселенной) разбросано невероятное количество миниатюрных чёрных дыр, размеры которых не превышают габаритов атомного ядра. Однако в отличие от своих «глобальных» собратьев эти миниатюрные чёрные дыры изначально являют собой остаток и отголосок теории «Большого взрыва». Миниатюрные чёрные дыры влияют на пространство-время совершенно иным образом, из-за их близкого «родства» с пятым измерением.

И если уж мы упомянули теорию «большого взрыва», то здесь будет уместно напомнить всем об истоках космического микроволнового излучения. Это излучение — последствие самого «Большого взрыва», который зародился во Вселенной. Впервые его обнаружили в 60-х годах прошлого века по радиошумам, исходившим, как тогда показалось, из всех точек Космоса. Учёные посчитали, что излучение космических микроволн — лучшее подтверждение теории «Большого взрыва», которая только может существовать. Последние измерения показали, что температура в районах микроволнового излучения равна -270° по Цельсию.

Темной загадкой представляется нам и тёмная материя, которой в космосе огромное количество. Но её пока нельзя ни видеть, ни вычислить всеми доступными нам способами, используя даже самое последнее оборудование. Кандидатами на составную часть тёмной материи являются нейтрино (стабильная незаряженная элементарная частица с нулевой массой). Именно они считаются составной частью чёрных дыр. Некоторые учёные задаются вопросом: чёрная материя вообще-то реальна? Они полагают, что разгадка этой задачи лежит в области иного рассмотрения и понимания теории гравитации.

ЗЕМНЫЕ СТРАСТИ КОСМОСА

Вплоть до 90-х годов прошлого столетия мы знали только о близких нам планетах нашей солнечной системы. Но прошло совсем немного времени, и астрономы идентифицировали уже более 190 планет, находящихся вне солнечной системы. Планеты сильно разнятся по своим размерам и физическим данным, от гигантских газовых шаров до самых минимальных, чью орбиту даже невозможно вычислить. Но поиски новой (или второй) Земли пока к положительным результатам не привели. Однако астрономы уверены, что новейшие технологии позволят учёным обнаружить миры, схожие с нашей земной жизнью.

Волны гравитации подобны складкам на тканом материале. Именно так они представляются специалистам согласно теории относительности Альберта Эйнштейна. Волны гравитации распространяются со скоростью света, но они очень слабы. Специалисты надеются вычислить их уже в момент их образования во время любого серьёзного космического события. К примеру, в момент их поглощения одной из чёрных дыр Вселенной.

Уже созданы установки, которые смогут запечатлеть такое событие.

Кстати, такие явления (поглощения иных планет чёрной дырой) называются сегодня красивым словосочетанием — галактический каннибализм.

Как и на Земле, в космосе происходит борьба за выживание. Одна галактика пожирает другую, продолжая развиваться и со временем эволюционировать. Ближайшая соседка Млечного Пути — Андромеда «обедает» в данное время со своими сателлитами. Более чем дюжина звёздных скоплений разбросаны в туманности Андромеды, они являются всего лишь останками её предыдущих питательных процессов.

Учёные попытались компьютерно обрисовать галактическое столкновение Андромеды с нашей галактикой, которую астрономы ожидают в ближайшие 3 млрд лет. Впечатляющая получилась картина!

Тайной покрыто и малоизвестное нам нейтрино — стабильная незаряженная элементарная частица с нулевой массой, которая может беспрепятственно преодолевать любые расстояния. Некоторые из них прошли сквозь ваше тело, пока вы читаете эту статью, между прочим. Эти частицы возникли в глобальных котельных сгорающих здоровых звёзд или при суперновых галактических взрывах, погибающих звёзд. Детекторы нейтрино сейчас устанавливаются в глубинах мирового океана, согласно новому проекту IceCube. Некоторые такие детекторы крепятся к днищам огромных ледяных айсбергов. А результаты данных работ скоро станут нам известны.

И это лишь некоторые загадки космоса, которые человеку предстоит раскрыть в будущем.

ВСЕЛЕННАЯ И МЫ

Что там, в глубинах Вселенной?

Как возник мир? По каким законам развивается Вселенная? Сколько ей лет и какова продолжительность её будущего существования? Не одно столетие человечество занимают эти вопросы. Сегодня наука достигла таких высот, что, кажется, вот-вот даст на них ответы. Так ли это? Мы попросили прояснить ситуацию доктора физико-математических наук, профессора Научно-исследовательского ядерного университета «МИФИ» С.Г. РУБИНА.

– Сергей Георгиевич, как известно, самой распространённой теорией возникновения Вселенной считается теория Большого взрыва. Объясните, пожалуйста, в чём её суть. Многие, хотя и знают, что она существует, плохо представляют себе, что это такое.

– Знаете, современная наука, хотя и не решила окончательно вопрос о происхождении Вселенной, продвинулась так далеко, что человеческого воображения уже не хватает, чтобы представить суть некоторых научных открытий. То же и с теорией Большого взрыва. Поскольку наш мозг формировался миллионы лет в определённых условиях (малые скорости, слабая гравитация, макроскопические размеры), нам очень трудно принять, что пространство и время изначально возникли в микроскопической области, что Вселенная постоянно расширяется и так далее. Не могут себе этого зримо представить и учёные, но у них, помимо воображения, есть ещё один инструмент, которого лишены люди, не связанные с наукой, – это хорошо проверенные уравнения. Именно они доказывают, что до Большого взрыва существовало некое поле, обладавшее рядом физических свойств, в том числе и плотностью энергии. Согласно квантовой теории, флуктуации этого поля постоянно возникают как в прошлом, так и в настоящем. Так вот, лет тридцать-сорок назад выяснилось, что при некоторых видах флуктуаций поля возникает расширение пространства, причём в первый момент процесс расширения имел огромную скорость. В науке это называется инфляцией. Соответственно плотность энергии поля, внутри которого происходила инфляция, начала быстро уменьшаться, порождая энергичные частицы (именно из них потом и образовались все небесные тела). Это означало рост температуры во Вселенной, поскольку известно, температура системы пропорциональна характерной энергии его частиц. Вот этот процесс, который для нас, современных наблюдателей, кажется единым мгновением и называется Большим взрывом. И с этого момента пространство продолжало расширяться, замедляясь, температура постепенно понижалась, а примерно через 13,6–13,7 миллиарда лет появился на Земле человек.

– Но как возникло вот это первоначальное поле и в каких условиях оно существовало, если тогда не было ни пространства, ни времени – в нашем понимании?

– На этот вопрос у науки нет ответа. Возможно, поле существовало всегда, возможно, оно когда-то возникло по неведомым нам причинам… Единственное, что мы знаем точно, – оно существовало до возникновения Вселенной и существует до сих пор, продолжая постоянно флуктуировать. Также нет ответа на вопрос о том, в каких условиях оно существовало: мы не знаем уравнений, которые могут их описать, а значит, можно только гадать. А всё, что может существовать только на уровне догадок, наука в расчёт не принимает.

– А помимо математических расчётов есть какие-то аргументы, подтверждающие теорию Большого взрыва?

– Ну конечно! Любой уважающий себя физик всё время проверяет свои уравнения на практике. Например, в 1960‑х годах было открыто реликтовое излучение, которое доказало, что Вселенная раньше была очень горячей, а потом стала охлаждаться за счёт расширения. А вот ещё одно доказательство: звёзд старше тринадцати миллиардов лет не обнаружено. Более того, если бы Вселенная существовала вечно, звёзды не могли бы образовываться, по крайней мере, в том виде, в каком они существуют сейчас. Потому что любая звезда состоит в основном из водорода, который постепенно перерабатывается в гелий. То есть водорода уже давно не осталось бы. Ну и наконец, теорию подтверждают расчёты на мощных компьютерах, в коде которых воссоздаются условия Большого взрыва, и они, опираясь на эти данные, моделируют то же распределение галактик, какое существует на самом деле.

– Но ведь есть альтернативные теории? Например, теория пульсирующей Вселенной…

– Да, такая теория есть и её разрабатывают серьёзные учёные. Согласно ей, наша Вселенная существует вечно, то расширяясь в пространстве до своего максимума, то сжимаясь обратно и уничтожая всё существующее в ней. Но я этой теорией никогда не занимался и, честно говоря, считаю её не слишком перспективной. Что же до других альтернативных теорий, то вероятность их корректности мала.

– Интересно, что теории Большого взрыва доверяют не только светские учёные. К ней положительно относятся Католическая и Православная Церкви – по их мнению, она не опровергает возможности сотворения мира Богом.

– Я с большим уважением отношусь ко всем религиям и к верующим людям. Но для меня как для физика нет понятия веры, есть лишь понятие вероятности. И если мы хотим определить степень вероятности существования Бога, необходимо определиться с предметом разговора, ответить на вопрос – какими свойствами обладает сущность, которую мы называем Богом. Может ли Он нарушать законы природы? Продолжает ли Он за нами, грешными, наблюдать и карать за проступки? Если да, то зачем, каким образом? Конечно, вероятность того, что первопричина возникновения нашей Вселенной – Бог, остаётся, но, по моему мнению, она крайне мала. И чем бóльшим количеством свойств, подобных тем, что я только что назвал, мы Его наделяем, тем меньше шансов (на мой взгляд!), что Бог существует, то есть вероятность падает практически до нуля. Но, как известно, вера – явление самодостаточное, научного обоснования ей не требуется, так что верить в Бога или нет – личное дело каждого.

– Конечно, вы правы, вопрос веры каждый решает сам для себя. Но если принять атеистическую точку зрения, то получается, что возникновение Вселенной – чистая случайность?

– Совершенно верно.

– Но тогда почему в ней всё настолько упорядочено, гармонично? Ведь случайность ассоциируется скорее с хаосом.

– Замечательный вопрос. Над ним размышляют многие учёные. Действительно, такая случайность поначалу кажется невероятной. Однако все мы когда-нибудь видели, как из небольшой трещинки на заасфальтированной площади пробивается на свет одинокий цветочек. Спрашивается, как же семя, из которого он вырос, ухитрилось попасть именно в эту трещину? Но вопрос снимается, как только мы понимаем, что это было одно из тысячи семян, большинство которых погибло на асфальте.

Да и по поводу гармонии природы у меня большие сомнения. Практически каждый человек чем-нибудь да болен. Мир животных жесток – всё время идёт борьба за выживание. Идеальные природные условия для существования реализуются крайне редко и т. д.

– Не хотите ли вы сказать, что наша Вселенная образовалась в результате одной из тысяч случайных реакций, большинство из которых ни к чему не привели?

– Именно! Только не тысяч – многих миллиардов! Наша Вселенная – всего лишь одна из бесконечного числа Вселенных с самыми разными свойствами. Все они возникают в результате различных флуктуаций. В подавляющем большинстве Вселенных ничего зародиться не может, они пустые. А вот наше поле сфлуктуировало так, что возникли условия для зарождения жизни.

– В связи с этим хочется задать другой вопрос – вы в инопланетян верите?

– Повторюсь, слово «вера» – не из лексикона учёных. Только в нашей Галактике порядка 100 миллиардов звёзд. Вокруг большинства вращаются планеты. Очевидно, что на многих из них имеются условия, аналогичные Земным. Ну а одинаковые условия приводят к одинаковым результатам – разум на них должен зародиться. Так что уверен с высокой вероятностью, что наша планета далеко не единственная, на которой возникла жизнь, и в нашей Вселенной, помимо Земли, существует множество других цивилизаций.

– А почему же тогда до сих пор нет никаких реальных подтверждений этому?

– Это как раз очень тревожит современных учёных. Ведь многие из этих цивилизаций намного древнее нас, может быть, они уже погибли. А может быть, они о нас знают, но мы им просто не интересны. Ведь представьте только, насколько они более развиты, чем мы, если их цивилизация на несколько миллиардов лет древнее нашей? Не исключено даже, что эти цивилизации и выполняют для нас те самые функции Бога, о которых мы с вами говорили.

– То есть жизнь на Земле, возможно, инопланетного происхождения?

– Вполне возможно. Но проблемы существования Бога это всё равно не решает, ведь те цивилизации тоже как-то возникли.

– Надеюсь, что мы встретимся с инопланетными братьями раньше, чем придёт конец земной цивилизации… Кстати, раз уж конец света не случился 21 декабря, как нам предрекали, то будет ли он вообще?

– Ну, если говорить о конце света как о гибели Вселенной, то это произойдёт очень нескоро – через много миллиардов лет. И скорее всего причиной тому станет чрезмерное расширение и, как результат, – охлаждение, при котором ни движение небесных тел, ни тем более какая-либо жизнь станут невозможны.

– Я недавно прочла, что этот процесс объясняется действием некой тёмной энергии, которой противостоит тёмная материя. Не могли бы вы пояснить, что это за феномены такие?

– Тёмная материя была открыта несколько десятков лет назад в результате наблюдения за движением звёзд в галактике. Было обнаружено, что звёзды движутся так, будто помимо них самих существует нечто, создающее дополнительное гравитационное притяжение. И вот это самое нечто и получило название «тёмная материя», потому что никто не знал, что это такое. Сейчас предполагается, что тёмная материя – это некие частицы, которым присущи два особых свойства: они очень массивные и практически не взаимодействуют с окружающей средой, что делает их невидимыми.

Тем не менее они повсеместно присутствуют, поэтому учёные не теряют надежду их всё-таки найти. Кто первый найдёт – тот и нобелевский лауреат.

– А тёмная энергия?

– С ней сложнее. Тёмную энергию обнаружили в 1998 году, и оказалось, что именно она составляет около 70 процентов всей существующей плотности энергии. Если коротко, то тёмная энергия создаётся полем, которое очень равномерно распределено по всему пространству Вселенной, что само по себе весьма странно. Но ещё более странно, что в этом поле отсутствуют какие-либо колебания, только чистая энергия, пребывающая в стационарном состоянии. Почему – существует множество версий, но точного ответа пока никто не знает.

– Но тёмная энергия как-то воздействует на Вселенную?

– Говоря простым языком, она заставляет далёкие галактики разбегаться все дальше, причём с небольшим ускорением. Если бы тёмной энергии не было, то на каком-то этапе расширение Вселенной замедлилось бы до минимума. А так пространство расширяется всё с бóльшим ускорением, скопления галактик разлетаются всё дальше, температура во Вселенной понижается. В конце концов небесные тела остынут. Впрочем, как я уже говорил, до этого ещё миллиарды лет.

– Это обнадёживает! Но то Вселенная, а как насчёт нашего земного шарика? Ему-то сколько осталось?

– Да столько же, сколько будет светить наша звезда – Солнце. Ведь опасностей из космоса не так много. Исследования же Солнца свидетельствуют, что ещё примерно 5 миллиардов лет оно наверняка будет функционировать в том же режиме, что и сейчас. Не погаснет и не начнёт греть нас слишком сильно. Большой метеорит, конечно, может уничтожить жизнь на Земле, но учёные контролируют движение крупных небесных тел, и в случае возникновения опасности мы сможем её предотвратить уже в недалёком будущем. Так что главная опасность исходит от нас же самих. И день конца света в первую очередь зависит от того, насколько бережно мы будем относиться к миру, в котором оказались по счастливой случайности…

– От себя добавлю – случайность, которая, несмотря ни на что, так похожа на чудо…

Беседовала Марианна МАРГОВСКАЯ

мужчины","Отец","Сын".Озаглавьте свое изложение.Подчеркните в своем изложении причастия
Я увидел, как из-за крайних дворов хутора вышел на дорогу мужчина. Он вел за руку маленького мальчика, судя по росту-лет пяти-шести, не больше. Они устало брели по направлению к переправе, но, поравнявшись с машиной, повернули ко мне. Высокий, сутуловатый мужчина, подойдя вплотную, сказал пригулшенным баском: -Здорово, браток!







-Беда мне с этим пассажиром!




А отец выглядел иначе: прожженный в нескольких местах ватник был небрежно и грубо заштопан, латка на выношенных защитных штанах не пришита как следует, а скорее наживлена широкими, мужскими стежками. На нем были почти новые солдатские ботинки, но плотные шерстяные носки изъедены молью.

Подчеркните в своем изложении причастия.

Я увидел, как из-за крайних дворов хутора вышел на дорогу мужчина. Он вел за руку маленького мальчика, судя по росту-лет пяти-шести, не больше. Они устало брели по направлению к переправе, но, поравнявшись с машиной, повернули ко мне. Высокий, сутуловатый мужчина, подойдя вплотную, сказал пригулшенным баском:

Здорово, браток!

Здравствуй.-Я пожал протянутую мне большую, черствую руку. Мужчина наклонился к мальчику, сказал:

Поздоровайся с дядей, сынок. Он, видать, такой же шофер, как и твой папанька.

Глядя мне прямо в глаза светлыми, как небушко, глазами, чуть-чуть улыбаясь, мальчик смело протянул мне розовую холодную ручонку. Я легонько потряс ее, спросил:

Что же это у тебя, старик, рука такая холодная? На дворе теплынь, а ты замерзаешь?

С трогательной детской доверчивостью мальчик прижался к моим коленям, удивленно приподнял белесые брови.

Какой же я старик, дядя? Я вовсе мальчик, и я вовсе не замерзаю, а руки холодные-снежки катал потому что.

Сняв со спины тощий вещевой мешок, устало присаживаясь рядом со мной, отец сказал:

Беда мне с этим пассажиром!

Он достал из кармана защитных летних штанов свернутый в трубку мальновый шелковый потертый кисет, развернул его, и я успел прочитать вышитую на уголке надпись: "Дорогому бойцу от ученицы 6-го класса Лебедянской средней школы".

Мы закурили крепчайшего самосада и долго молчали. Он положил на колени большие темные руки, сгорбился. Я сбоку взглянул на него, и мне стало что-то не по себе...

Видали вы когда-нибудь глаза, словно присыпанные пеплом, наполненные такой неизбывной смертной тоской, что в них трудно смотреть? Вот такие глаза были у моего случайного собеседника.

Украдкой рассматривая отца и сынишку, я с удивлением отметил про себя одно, странное, на мой взгляд, обстоятельство. Мальчик был одет просто, но добротно, и то, как сидела на нем подбитая легкой, поношенной цигейкой длиннополая курточка, и то, что крохотные сапожки были сшиты с расчетом надевать их на шерстяной носок, и очень искусный шов на разорванном когда-то рукаве курточки-все выдавало женскую заботу, умелые материнские руки.

А отец выглядел иначе: прожженный в нескольких местах ватник был небрежно и грубо заштопан, латка на выношенных защитных штанах не пришита как следует, а скорее наживлена широкими, мужскими стежками. На нем были почти новые солдатские ботинки, но плотные шерстяные носки изъедены молью.


В глубинах Вселенной

Вселенная

В безлунные ночи на небе хорошо видна туманная полоса Млечного Пути. Но это не скопление туманных масс, а множество звезд – наша звездная система Галактика. В Галактике по современным оценкам около 200 миллиардов звезд. Чтобы пересечь её из конца в конец световой луч при скорости 300 тысяч километров в секунду должен затратить около 100 тысяч лет1.

Однако, несмотря на столь грандиозные размеры, наша Галактика лишь один из множества подобных звездных островов Вселенной. У неё есть спутники. Самые крупные из них – Большое и Малое Магеллановы Облака. Вместе с нашей Галактикой они обращаются вокруг общего центра масс. Наша Галактика, Магеллановы Облака и еще несколько звездных систем, в том числе знаменитая туманность Андромеды, образуют так называемую Местную Группу Галактик.

Современным телескопам и радиотелескопам, а также другим средствам астрономических исследований доступна колоссальная область пространства. Её радиус 10-12 миллиардов световых лет. В этой области расположены миллиарды галактик. Это – Метагалактика.

^ В расширяющейся метагалактике

Одной из самых ошеломляющих астрономических теорий, появившейся на свет в текущем столетии, бесспорно, можно считать теорию «расширяющейся Вселенной» или, точнее говоря, расширяющейся Метагалактики.

Главная идея этой теории состоит в том, что Метагалактика возникла около 15-20 миллиардов2 лет назад в результате грандиозного космического взрыва компактного сгустка сверхплотной материи.

^ Несколько слов о том, как родилась эта теория

Одним из самых эффективных методов изучения Вселенной является построение различных теоретических моделей, т. е. упрощенных теоретических схем мироздания. Длительное время в космологии изучались так называемые однородные изотропные модели. Что это значит?

Вообразим, что мы разбили Вселенную на множество «элементарных» областей и что каждая из них содержит большое количество галактик. Тогда однородность и изотропия означают, что свойства и поведение Вселенной в каждую эпоху одинаковы во всех достаточно больших областях и по всем направлениям.

Первую модель однородной изотропной Вселенной предложил А. Эйнштейн. Она описывала так называемую стационарную Вселенную, т. е. такую Вселенную, которая с течением времени не меняется в общих чертах, но в которой вообще нет каких-либо движений достаточно крупного масштаба.

Однако в 1922 г. талантливый ленинградский ученый А. А. Фридман показал, что уравнения Эйнштейна допускают также множество нестационарных, а именно расширяющихся и сжимающихся, однородных изотропных моделей. Позднее выяснилось, что, и статическая модель Эйнштейна неизбежно переходит в нестационарную. Но это означало, что однородная изотропная Вселенная обязательно должна либо расширяться, либо сжиматься.

Еще до этого американский астроном Слайфер обнаружил красное смещение спектральных линий в спектрах галактик. Подобное явление, известное в физике под названием эффекта Доплера, наблюдается в тех случаях, когда расстояние между источником света и приемником увеличивается.

^ Вселенная в гамма-лучах

Как известно, на протяжении весьма длительного времени астрономия была чисто «оптической»1 наукой. Человек изучал на небе то, что он видел – сперва невооружённым глазом, а затем с помощью телескопов. С развитием радиотехники родилась радиоастрономия, значительно расширившая наши знания о Вселенной. Наконец, в последние годы в результате появления космических средств исследования возникла возможность изучения и других электромагнитных вестников Вселенной – инфракрасных, ультрафиолетовых, рентгеновских и гамма-излучений. Астрономия превратилась во всеволновую науку.

Одним из новых методов исследования космических объектов является рентгеновская астрономия. Несмотря на то, что этот метод сравнительно молод, в настоящее время Вселенную уже невозможно представить себе без тех данных, которые получены благодаря наблюдениям в рентгеновском диапазоне.

Пожалуй, ещё более многообещающим источником космической информации являются гамма-излучения. Дело в том, что энергия гамма-квантов может в сотни тысяч и миллионы раз превосходить энергию фотонов видимого света. Для таких гамма-квантов Вселенная фактически прозрачна. Они распространяются практически прямолинейно, приходят к нам от весьма удалённых объектов и могут сообщить чрезвычайно ценные сведения о многих физических процессах, протекающих в космосе.

Особенно важную информацию гамма-кванты способны принести о необычайных, экстремальных состояниях материи во Вселенной, а именно такие состояния интересуют современных астрофизиков в первую очередь. Так, например, гамма-излучение возникает при взаимодействии вещества и антивещества, а также там, где происходит рождение космических лучей – потоков частиц высоких энергий.

Главная трудность гамма-наблюдений Вселенной заключается в том, что хотя энергия космических гамма-квантов и очень велика, но число этих квантов в околоземном пространстве ничтожно мало. Современные гамма-телескопы даже от самых ярких гамма-источников регистрируют примерно один квант за несколько минут.

Значительные трудности возникают и вследствие того, что первичное космическое излучение приходится изучать на фоне многочисленных помех. Под действием заряжённых частиц космических лучей, приходящих на Землю, – протонов и электронов, начинают ярко «светиться» в гамма-диапазоне и земная атмосфера, и конструкции космического аппарата, на борту которого установлена регистрирующая аппаратура.

Как же выглядит Вселенная в гамма-лучах? Представьте себе на минуту, что ваши глаза чувствительны не к видимому свету, а к гамма-квантам. Какая картина предстала перед нами? Взглянув на небо, мы не увидели бы ни Солнца, ни привычных созвездий, а Млечный Путь выглядел бы узкой светящейся полосой. Кстати, подобное распределение галактического гамма-излучения подтвердило предположение, высказанное в своё время известным советским физиком академиком В. Л. Гинзбургом о том, что космические лучи имеют в основном галактическое, а не внегалактическое происхождение.

В настоящее время с помощью гамма-телескопов, установленных на космических аппаратах, зарегистрировано несколько десятков источников космического гамма-излучения. Пока ещё нельзя точно сказать, что они собой представляют, – звёзды ли это или другие компактные объекты, или, может быть, протяжённые образования. Есть основания предполагать, что гамма-излучение возникает при нестационарных, взрывных явлениях. К числу таких явлений относятся, например, вспышки сверхновых звёзд. Однако при обследовании 88 известных остатков сверхновых было обнаружено только два источника гамма-излучения.

^ Судьба одной гипотезы

У планеты Марс есть два маленьких спутника – Фобос и Деймос. Деймос обращается по орбите, удаленной от планеты примерно на 23 тыс. км, а Фобос движется на расстоянии всего около 9 тыс. км от Марса. Вспомним, что Луна удалена от нас на 385 тыс. км, т.е. находится в 40 с лишним раз дальше от Земли, чем Фобос от Марса.

Вся история изучения Фобоса и Деймоса полна удивительных событий и увлекательных загадок. Судите сами: первое напоминание о наличии у Марса двух небольших спутников появилось не в научных трудах, а на страницах знаменитых «Путешествий Гулливера», написанных Джонатаном Свифтом в начале 18 столетия.

По ходу событий Гулливер оказывается на летучем острове Лапуте. И местные астрономы рассказывают ему, что им удалось открыть два маленьких спутника, обращающихся вокруг Марса.

В действительности же марсианские луны были открыты А.Холлом лишь спустя полтора столетия после выхода романа в свет, во время великого противостояния Марса 1877 г. И открыты при исключительно благоприятных атмосферных условиях после упорных многодневных наблюдений, на пределе возможностей инструмента и человеческих глаз.

Сейчас можно только гадать, что побудило Свифта предсказать существование двух спутников Марса. Во всяком случае, не телескопические наблюдения. Скорее всего, Свифт предполагал, что число спутников у планет должно возрастать по мере удаления от Солнца. В то время было известно, что у Венеры спутников нет, вокруг Земли обращается один спутник – Луна, а вокруг Юпитера – четыре, они были открыты Галилеем в 1610 г. Получалось «очевидная» геометрическая прогрессия, в которую на свободное место, соответствующее Марсу, казалось, сама собой просилась двойка.

Впрочем, Свифт предсказал не только существование Фобоса и Деймоса, но и то, что радиус орбиты ближайшего спутника Марса равен трем поперечником планеты, а внешнего – пяти. Три поперечника – это около20 тысяч км. Примерно на таком расстоянии расположена орбита Деймоса. Правда, не внутреннего спутника, как утверждал Свифт, а внешнего – но все равно совпадение впечатляет. Разумеется, именно совпадение

В очередной раз очередной раз внимание к марсианским лунам было привлечено во второй половине текущего столетия. Сравнивая результаты наблюдений, проведенных в разные годы, астрономы пришли к выводу, что ближайший спутник Марса Фобос испытывает торможение, благодаря которому постепенно приближается к поверхности планеты. Явление выглядело загадочно. Во всяком случае, никакими эффектами небесной механики наблюдаемое торможение объяснить не удалось.

^ Черные дыры во вселенной

В последние годы большую популярность в астрофизике приобрела гипотеза так называемых черных дыр.

Двадцатый век принес с собой целый ряд удивительных открытий в физике и астрономии. Идет своеобразная цепная реакция: обнаруживаются диковинные явления, а их дальнейшее изучение и осмысление приводит к открытию явлений, еще более поразительных. Таков закономерный путь развития естествознания.

Один из самых диковинных, правда, пока еще «теоретических» космических объектов, который в последние годы привлекает особое внимание физиков и астрофизиков, – черные дыры. Одно название чего стоит: дыры во Вселенной да еще черные!

Согласно общей теории относительности Эйнштейна, силы тяготения непосредственно связаны со свойствами пространства. Любое тело не просто существует в пространстве само по себе, но определяет его геометрию. Однажды какой-то предприимчивый репортер обратился к Эйнштейну с просьбой изложить суть его теории в одной фразе и так, чтобы это было понятно широкой публике. «Раньше полагали, – ответил на это Эйнштейн, – что если бы из Вселенной исчезла вся материя, то пространство и время сохранилось бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время».

Любые массы искривляют окружающее пространство. В повседневной жизни мы этой искривленности практически не ощущаем, поскольку нам обычно приходится иметь дело со сравнительно небольшими массами. Однако в очень сильных полях тяготения этот эффект может приобретать существенное значение.

За последние годы во Вселенной обнаружен целый ряд явлений, которые свидетельствуют о возможности концентрации огромных масс в сравнительно небольших областях пространства.

Если некоторая масса вещества окажется в малом объеме, критическом для данной массы, то под действием собственного тяготения это вещество начинает сжиматься. Наступает своеобразная гравитационная катастрофа – гравитационный коллапс.

1 Эти данные получены

2 Это основная идея

1 Это известно далеко не всем

Эмил Иванов - оперный певец и астроном-любитель в одном лице. С ранних лет он интересовался пением и астрономией. Первый телескоп Эмил построил в 9 лет: в дело пошли очковые стекла и объектив от театрального бинокля. А свои первые снимки звездного неба он получил с помощью 35-мм фотоаппарата «Смена»

Закончив школу, Эмил Иванов начал изучать в Государственном университете Софии астрономию, но через два года перевелся в Музыкальную академию, которую окончил спустя пять лет. А дальше началась его карьера оперного певца, в ходе которой он выступал на самых престижных площадках мира. Профессиональная занятость до самого последнего времени не позволяла ему обратиться к любимому хобби, однако с 2009 года, когда Эмил стал обладателем 12-дюймового астрографа, он получил возможность заниматься астрофотографией.

В результате за 3 года у Эмила скопилась внушительная коллекция астрономических снимков с изображениями планет и солнца, комет, Луны и самых разнообразных объектов глубокого космоса.

(Всего 20 фото)

1. Весной небо северного полушария бедно на звезды, так как мы смотрим в сторону от диска Галактики, где сосредоточены большинство звезд Млечного Пути, туманности и звездные скопления. Зато перед нами открываются глубины космоса - скопления галактик в созвездиях Волос Вероники и Девы. Одна из множества звездных систем, которые можно увидеть на небе весной, - великолепная спираль М94, галактика в созвездии Гончих Псов, расположенная на расстоянии 16 миллионов световых лет от нас. Вместе с еще примерно 20 галактиками М94 входит в группу галактик, которая является частью сверхскопления в Деве. Частью этого же сверхскопления является и наша галактика, Млечный Путь

2. У туманности IC 405 существует еще несколько номеров в разных каталогах (Sh 2-229, Колдуэлл 31), но любителям астрономии она известна под названием Туманность пламенеющей звезды. Это обширное скопление газа и пыли находится в созвездии Возничего и окружает очень горячую звезду AE Возничего (в центре снимка). Мощное излучение звезды ионизирует газ туманности, заставляя его светиться красным, а также отражается от чрезвычайно мелких пылинок поблизости. В результате мы видим вблизи звезды и голубые тона. По галактическим меркам АЕ Возничего сущий младенец - возраст ее составляет всего 2-3 миллиона лет. Однако за это время звезда проделала большой путь по небу: исследования показывают, что родилась АЕ Возничего в Туманности Ориона. Что придало звезде столь большую скорость, что она навсегда покинула свою колыбель, сегодня в точности не известно

3. Шаровое скопление М3 в созвездии Гончих Псов. Это довольно яркое шаровое скопление лучше всего видно на небе весной. Находится оно на полпути между ярким Арктуром и α Гончих Псов. Как и подавляющее большинство шаровых скоплений Галактики, М3 старое скопление - его возраст составляет, вероятно, больше 11 миллиардов лет. Очень четкие снимки вроде этого показывают множество красных гигантов - звезд, находящихся на поздних стадиях эволюции

4. Не секрет, что плоскость нашей Галактики сильно «запылена». Межзвездная пыль и молекулярные облака поглощают свет далеких звезд, скрывая от нас центр Млечного Пути и много других интересных объектов. Невооруженному глазу холодные облака предстают в лучшем случае в виде темных провалов на фоне бледного свечения Млечного Пути, но на фотографиях, подобных этой, можно в деталях рассмотреть их структуру. В центре снимка - яркая звезда β Цефея. В правом нижнем углу находится известная отражательная туманность Ирис (NGC 7023), чуть левее ее - туманность Призрак. А у левого края снимка находится вытянутая туманность Барнард 175

5. Красивая спиральная галактика М88 из созвездия Волосы Вероники. Эта звездная система находится на расстоянии 47 миллионов световых лет от Земли. В ядре М88 идут активные процессы, связанные, вероятно, со взаимодействием вещества галактики и сверхмассивной черной дыры. Астрономы установили, что масса центральной черной дыры составляет около 80 миллионов масс Солнца

6. М21, рассеянное звездное скопление в созвездии Стрельца. Это скопление находится довольно далеко от нас, на расстоянии свыше 4 тысяч световых лет, поэтому невооруженным глазом оно не видно. Однако даже небольшой бинокль без труда разрешает его на звезды. Скопление М21 очень молодо - его возраст оценивается в 4,6 миллиона лет.

7. Эмиссионная туманность NGC 2174. Эта обширная и довольно яркая туманность находится в созвездии Ориона, там, где на древних картах изображалась поднятая вверх дубинка охотника. Левый край туманности имеет сложную структуру; свечение водорода перемежается с темными прожилками пыли. На снимках телескопа «Хаббл» в этом месте видны глобулы и столбы пыли, подобные знаменитым Столбам Творения в туманности М16

8. детальное изображение участка созвездия Цефея с темными туманностями LBN 468, LDN 1148, LDN 1155, LDN 1158, HH 215. Первые четыре туманности вошли в каталоги ярких и темных туманностей Линдса (Lynds Bright Nebula, Lynds Dark Nebula), последний, похожий на головастик, объект справа внизу - объект Хербига-Аро 215

9. Группа галактик в Драконе. Прекрасное трио галактик состоит из двух спиральных (NGC 5981 и NGC 5985 - слева и справа) галактик и эллиптической NGC 5982 (в центре). Они действительно физически связаны друг с другом и располагаются примерно на одном и том же расстоянии от нас - около 100 миллионов световых лет. Из-за весьма солидного расстояния интегральный блеск каждой из этих галактик не превышает 11-й зв. величины. Однако на этом замечательном снимке проявились и гораздо более далекие галактики

10. Среди россыпей звезд в созвездии Стрелы находится маленькая эмиссионная туманность Sh2-82 (объект номер 82 из каталога Шарплесса). Туманность окружена голубоватой отражательной туманностью; обе они находятся позади мощного скопления пыли

11. М19 - далекое шаровое скопление в созвезии Змееносца. Возраст скопления составляет почти 12 миллиардов лет, оно состоит более чем из миллиона звезд, многие из которых уже сошли с главной последовательности и проходят стадию красных гигантов. Отчетливо видно, что форма М19 вытянута, однако на инфракрасных снимках скопление предстает почти идеальным шаром. Очевидно, и здесь не обошлось без межзвездной пыли, которая скрывает часть М19 от наших глаз.

12. Галактика Игла (она же NGC 4565) в созвездии Волосы Вероники. Эта великолепная спиральная галактика расположена к нам ребром, поэтому мы не наблюдаем спиральных рукавов, зато очень хорошо видим центральное утолщение - балдж - и прослойку межзвездной пыли. Если бы мы могли взглянуть на нашу собственную звездную систему, Млечный Путь, со стороны, то она выглядила бы, вероятно, очень похоже на галактику Игла. Кроме NGC 4565 на снимок попало еще две галактики - NGC 4562 (в левом верхнем углу) и IC 3571 (маленькое голубоватое пятнышко непосредственно под галактикой Игла).

13. Галактики М81 и М82 в созвездии Большой Медведицы. Замечательная пара галактик давно является излюбленным объектом для многих любителей астрономии - она прекрасно видна даже в 50-мм бинокли. М81 известна как галактика Боде, а М82 - как галактика Сигара или Взрывающаяся галактика. Изучая спектр галактики М82 (справа) астрономы еще 3-4 десятилетия назад полагали, будто в центре ее произошел грандиозный взрыв, однако современные исследования с помощью крупнейших телескопов предлагают другое объяснение внешнему виду галактики. Согласно ему в М82 идут процессы бурного звездообразования, и звездный ветер от тысяч молодых горячих звезд выдувает газ из галактики. Вспышка звездообразования, вероятно, произошла в результате гравитационного взаимодействия М81 и М82. На снимок также попала карликовая неправильная галактика Хольмберг IX, спутник галактики М81, которая видна чуть выше ее как клочковатое облачко

14. Темные провалы на небе давно были известны астрономам, но первым, кто взялся за их изучение, стал американский астроном Эдуард Барнард. В 1919 году он выпустил каталог темных туманностей, в который включил 182 подобных объекта. Одна из таких туманностей, Барнард 174, представлена на этом снимке. Астроном описал ее как узкую туманность неправильной формы, вытянутой с северо-востока на юго-запад и диаметром 19 угловых минут

15. Туманность Пузырь (NGC 7635) и рассеянное скопление М52 в созвездии Кассиопеи. Странная туманность сферической формы на первый взгляд кажется планетарной, однако на самом деле это не так. Пузырь выдувает горячая звезда, находящаяся внутри него, справа по центру. Мощный звездный ветер буквально расталкивает межзвездное вещество в разные стороны. Размеры пузыря уже достигли 10 световых лет

16. В созвездии Большой Медведицы. На снимок попали сразу два объекта каталога Мессье, которые имеют, правда, совершенно различную природу. Слева вверху находится планетарная туманность Сова (М97), в правом нижнем углу - спиральная галактика М108. Туманность Сова - это расширяющаяся оболочка умершей звезды. Ядро звезды - горячий белый карлик в центре туманности - нагревает оболочку своим ультрафиолетовым излучением и заставляет ее переизлучать фотоны в видимом диапазоне спектра. Расстояние до М97 - 2600 св. лет. Галактика М108 находится в 17,5 тысяч раз дальше, на расстоянии около 45 миллионов световых лет. Ее масса и размеры сопоставимы с массой и размерами Млечного Пути

17. Рассеянное скопление М7 (скопление Птолемея). Это одно из ярчайших рассеянных скоплений на нашем небе. Находится оно в созвездии Скорпиона, в самой гуще Млечного Пути, на расстоянии около 1000 световых лет от нас. Скопление состоит из 80 звезд-гигантов, чья общая масса составляет более 700 масс Солнца. Несмотря на то что скопление довольно молодо (возраст его составляет 200 миллионов лет), наиболее массивные его звезды уже значительно проэволюционировали

18. Туманность Калифорния (NGC 1499) в созвездии Персея, снятая в нескольких узких полосах спектра. Эта огромная туманность вытянулась на небе на 2,5°, что составляет почти 5 дисков Луны. Несмотря на внушительные размеры, наблюдать туманность визуально невероятно трудно из-за ее чрезвычайно низкой поверхностной яркости. Тем не менее на фотографиях с большой экспозицией ее очертания проявляются достаточно подробно, напоминая внешне очертания штата Калифорния. Расстояние до туманности - около 1000 св. лет

19. NGC 1333 - отражательная туманность в созвездии Персея. На этом изумительном по четкости и глубине снимке туманность представляется густым хитросплетением газовых и пылевых облаков, почти не излучающих свет. Отраженное свечение имеет голубоватый цвет, кстати, по той же причине, по которой является голубой и земная атмосфера. Туманность NGC 1333 - часть молекулярного облака Персея, которое располагается от нас на расстоянии около 1000 световых лет. Внутри облака находится множество очень молодых звезд возрастом не более миллиона лет - фактически, ровесников человечества

20. Галактика Подсолнух (М63) - красивая спиральная звездная система в созвездии Гончих Псов. Галактика была открыта в 1779 году французским астрономом Пьером Мешеном, а в середине XIX века лорд Росс установил ее спиральную структуру. Размеры М63 составляют около 100000 световых лет, что сопоставимо с размерами Млечного Пути. Ее структура чрезвычайно любопытна - на снимке мы видим маленькое плотное ядро с множеством коротких, сильно закрученных спиральных рукавов. Но кроме этого мы видим также продолжения спиральных ветвей в виде слабых петель, продолжающихся далеко за пределы диска М63. Вероятно, эти структуры, состоящие также из звезд и газа, образовались в результате гравитационного взаимодействия с галактиками-соседями



© 2024 skypenguin.ru - Советы по уходу за домашними животными