Напряженность электростатического поля. Движение заряженных частиц в однородном электрическом поле

Напряженность электростатического поля. Движение заряженных частиц в однородном электрическом поле

01.03.2022

Тема 7.3 Работа, совершаемая силами электрического поля при перемещение заряда. Потенциал. Разность потенциала, напряжение. Связь между напряженностью и разностью потенциалов.

Работа электрических сил при переме­щении заряда q в однородном электрическом поле. Вычислим работу при переме­щении электрического заряда в однородном электрическом поле с напряженностью Е. Если пере­мещение заряда происходило по линии напряженности поля на расстояние ∆d = d 1 - d 2 (рис. 134), то работа равна

А = Fэ(d 1 - d 2) = qE(d 1 - d 2), где d 1 и d 2 - расстояния от начальной и конечной точек до пластины В.

Пусть заряд q находится в точке В однородного электрического поля.

Из курса механики известно, что работа равна произ­ведению силы на перемещение и на косинус угла между ними. Поэтому работа электрических сил при перемещении заряда q в точку С по прямой ВС выра­зится следующим образом:

Так как ВС cos α = BD, то получим, что А BC = qE·BD.

Pабота сил поля при перемещении заряда q в точку С по пути BDС равна сумме работ на отрезках BD и DC, т.е.

Поскольку cos 90° = 0, работа сил поля на участке DC равна нулю. Поэтому

.

Следовательно:

а) когда заряд перемещается по линии напряженности, а затем перпендикулярно к ней, то силы поля совершают работу только при перемещении заряда вдоль линии напряженности поля.

б) В однородном электрическом поле работа электрических сил не зависит от формы траектории.

в) Работа сил электрического поля по замкнутой траектории всегда равна нулю.

Потенциальное поле. Поле, в котором работа не зависит от формы траектории, назы­вается потенциальным. Примерами потенциальных полей являются поле тяготения и электрическое поле.

Потенциальная энергия заряда.

Когда заряд перемещается в электрическое поле из точки 1, где его потенциальная энергия была W 1 , в точку 2, где его энергия оказывается равной W 2 , то работа сил поля:

А 12 = W 1 - W 2 = - (W 1 - W t) = -ΔW 21 (8.19)

где ΔW 21 = W 2 - W t представляет собой приращение потенциальной энергии заряда при его перемещении из точки 1 в точку 2.

Потенциальная энергия заряда, находящегося в какой-либо точке поля, будет численно равна работе, совершаемой силами при перемещении данного заряда из этой почки в бесконечность.

Потенциал электростатического поля - физическая величина, равная отношению потенциальной энер­гии электрического заряда в электрическом поле к заряду. Он является энергетической характеристикой электрического поля в данной точке. Потенциал измеряется потенциальной энергией одиноч­ного, положительного заряда, находящегося в заданной точке поля к величине этого заряда

а) Знак потенциала определяется знаком заряда, создающего поле, поэтому потенциал поля положительного заряда уменьшается при удалении от него, а потенциал поля отрицательного заряда - увеличивается.

б) Поскольку потенциал является величиной скалярной, то, когда поле создано многими зарядами, потенциал в любой точке поля равен алгебраиче­ской сумме потенциалов, созданных в этой точке каждым зарядом в отдельности.

Разность потенциалов. Работу сил поля можно выразить с по­мощью разности потенциалов. Разность потенциалов Δφ =(φ 1 - φ 2) есть не что иное, как напряжение между точками 1 и 2, поэтому обозначается U 12 .

1 вольт – это такое напряжение (разность потенциалов) между двумя точками поля, при котором, перемещая заряд в 1 Кл из одной точки в другую, поле совершает работу в 1 Дж.

Эквипотенциальные поверхности. Во всех точках поля, находящихся на расстоянии r 1 от точечного заряда q, потенциал φ 1 будет одинаковый. Все эти точки находятся на поверхности сферы, описанной радиусом r 1 из точки, в которой нахо­дится точечный заряд q.

Поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной .

Эквипотенциальными поверх­ностями поля точечного электри­ческого заряда являются сферы, в центре которых расположен заряд (рис. 136).

Эквипотенциальные поверх­ности однородного электрическо­го поля представляют собой плос­кости, перпендикулярные линиям напряженности (рис. 137).

При перемещении заряда вдоль этой поверхности работа не совершается.

Линии напряженности электрического поля всегда нормальны к эквипотенциальным поверхностям. Это означает, что работа сил поля при перемещении заряда по эквипотенциальной поверхности равна нулю.

Связь между напряженностью поля и напряжением. Напряженность однородного поля численно равна разности потенциалов на единице длины линии напряженности:

Тема 7.4 Проводники в электрическом поле. Диэлектрики в электрическом поле. Поляризация диэлектриков. Распределение зарядов в проводнике, внесенном в электрическое поле. Электростатическая защита. Пьезоэлектрический эффект.

Проводники - вещества, хорошо проводящие электрический ток. В них всегда имеется большое количество носителей зарядов, т.е. свободных элек­тронов или ионов. Внутри проводника эти носители зарядов движутся хаотически.

Если проводник (металлическую пластинку) поместить в электрическое поле, то под действием электрического поля свободные электроны перемещаются в сторону действия электрических сил. В результате смещения электронов под действием этих сил на правом конце проводника возникает избыток положительных зарядов, а на левом - избыток электронов, поэтому между концами проводника возни­кает внутреннее поле (поле смещен­ных зарядов), которое направлено против внешнего поля. Перемещение электронов под действием поля происходит до тех пор, пока поле внутри проводника не исчезнет совсем.

Наличие свободных элек­трических зарядов в проводни­ках можно обнаружить в сле­дующих опытах. Установим на острие металлическую трубу. Сое­динив проводником трубу со стер­жнем электрометра, убедимся в том, что труба не имеет электри­ческого заряда.

Теперь наэлектризуем эбони­товую палочку и поднесем к одному концу трубы (рис. 138). Труба поворачивается на острие, притягиваясь к заряженной палочке. Следовательно, на том конце трубы, который располо­жен ближе к эбонитовой палоч­ке, появился электрический за­ряд, противоположный по знаку заряду палочки.

Электростатическая индукция. Когда проводник попадает в электрическое поле, то он элект­ризуется так, что на одном его конце возникает положительный заряд, а на другом конце такой же по величине отрицательный заряд. Такая электризация называется электростатической индукцией.

а) Если такой проводник удалить из поля, его положительные и отрицательные заряды вновь равномерно распределятся по всему объему проводника и все его части станут электрически нейтральными.

б) Если же такой проводник разрезать на две части, то одна часть будет иметь положительный заряд, а другая отрицательный

При равновесии зарядов на проводнике (при электризации проводника) потенциал всех его точек одинаков и поля внутри проводника нет, а потенциал всех точек проводника одинаков (как внутри него, так ина поверхности). В то же время поле вне наэлектризованного проводника существует, а его линии напряженности нормальны (перпендикулярны) к поверхности проводника. Следовательно, при равновесии зарядов на проводнике его поверхность является эквипотенциальной поверхностью.

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где dq – заряд, сосредоточенный на площади dS; dS – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS , расположенными симметрично относительно плоскости (рис. 2.12).


Рис. 2.11 Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток Ф Е через боковую часть поверхности цилиндра равен нулю, т.к.Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

;

откуда видно, что напряженность поля плоскости S равна:

(2.5.1)

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .

Тогда внутри плоскостей

(2.5.2)

Вне плоскостей напряженность поля

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

где S – площадь обкладок конденсатора. Т.к. , то

. (2.5.5)

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где dq – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре ) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

. (2.5.6)

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

Внутри меньшего и вне большего цилиндров поле будет отсутствовать (рис. 2.16).

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Для расчёта полей, созданных зарядами, которые равномерно распределены по сферическим, цилиндрическим или плоским поверхностям, применяют теорему Остроградского – Гаусса (раздел 2.2).

Методика расчёта полей с помощью теоремы

Остроградского - Гаусса .

1) Выбираем произвольную замкнутую поверхность, охватывающую заряженное тело.

2) Вычисляем поток вектора напряжённости сквозь эту поверхность.

3) Вычисляем суммарный заряд, охваченный этой поверхностью.

4) Подставляем в теорему Гаусса вычисленные величины и выражаем напряжённость электростатического поля.

Примеры расчёта некоторых полей

    Поле равномерно заряженного бесконечного цилиндра (нити) .

Пусть бесконечный цилиндр радиусом R равномерно заряжен с линейной плотностью заряда + τ (рис. 16).

Из соображений симметрии следует, что линии напряжённости поля в любой точке будут направлены вдоль радиальных прямых, перпендикулярных оси цилиндра.

В качестве замкнутой поверхности выберем коаксиальный с данным (с общей осью симметрии) цилиндр радиусом r и высотой .

Рассчитаем поток вектора через данную поверхность:

,

где S осн , S бок – площади оснований и боковой поверхности.

Поток вектора напряжённости сквозь площади оснований равен нулю, поэтому

Суммарный заряд, охватываемый выбранной поверхностью:

.

Подставив всё в теорему Гаусса, с учетом того, что ε = 1, получим:

.

Напряжённость электростатического поля, созданного бесконечно длинным равномерно заряженным цилиндром или бесконечно длинной равномерно заряженной нитью в точках, расположенных вне её:

, (2.5)

где r – расстояние от оси цилиндра до заданной точки (r R );

τ - линейная плотностью заряда.

Если r < R , то рассматриваемая замкнутая поверхность зарядов внутри не содержит, поэтому в этой области Е = 0, т. е. внутри цилиндра, поля нет .

    Поле равномерно заряженной бесконечной плоскости

Пусть бесконечная плоскость заряжена с постоянной поверхностной плотностью+ σ .

В качестве замкнутой поверхности выберем цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей (рис. 17). Так как линии, образующие боковую поверхность цилиндра, параллельны линиям напряжённости, то поток вектора напряжённости сквозь боковую поверхность равен нулю. Поток вектора напряженности сквозь две площади основания

.

Суммарный заряд, охватываемый выбранной поверхностью:

.

Подставив всё в теорему Гаусса, получим:

Напряженность электростатического поля бесконечной равномерно заряженной плоскости

. (2.6)

Из данной формулы вытекает, что Е не зависит от длины цилиндра, то есть напряжённость поля одинакова во всех точках. Иными словами, поле равномерно заряженной плоскости однородно.

    Поле двух бесконечных параллельных

разноимённо заряженных плоскостей

Пусть плоскости равномерно заряжены с одинаковыми по величине поверхностными плотностями +σ и –σ (рис. 18).

Согласно принципу суперпозиции,

.

Из рисунка видно, что в области между плоскостями силовые линии сонаправлены, поэтому результирующая напряжённость

. (2.7)

Вне объёма, ограниченного плоскостями, складываемые поля имеют противоположные направления, так что результирующая напряженность равна нулю.

Таким образом, поле оказывается сосредоточенным между плоскостями. Полученный результат приближённо справедлив и для плоскостей конечных размеров, если расстояние между плоскостями много меньше их площади (плоский конденсатор).

Если на плоскостях распределены заряды одного знака с одинаковой поверхностной плотностью, то поле отсутствует между пластинами, а вне пластин вычисляется по формуле (2.7).

    Напряжённость поля

равномерно заряженной сферы

Поле, создаваемое сферической поверхностью радиуса R , заряженной с поверхностной плотностью заряда σ , будет центрально симметричным, поэтому линии напряжённости направлены вдоль радиусов сферы (рис. 19, а).

В качестве замкнутой поверхности выберем сферу радиуса r , имеющую общий центр с заряженной сферой.

Если r > R , то внутрь поверхности попадает весь заряд Q .

Поток вектора напряжённости сквозь поверхность сферы

Подставив это выражение в теорему Гаусса, получим:

.

Напряжённость электростатического поля вне равномерно заряженной сферы:

, (2.8)

где r – расстояние от центра сферы.

Отсюда видно, что поле тождественно с полем точечного заряда той же величины, помещённого в центр сферы.

Если r < R , то замкнутая поверхность не содержит внутри зарядов, поэтому внутри заряженной сферы поле отсутствует (рис.19, б).

    Напряженность поля объёмно

заряженного шара

Пусть шар радиусаR заряжен с постоянной объёмной плотностью заряда ρ .

Поле в этом случае обладает центральной симметрией. Для напряжённости поля вне шара получается тот же результат, что и в случае поверхностно заряженной сферы (2.8).

Для точек внутри шара напряжённость будет другая (рис. 20). Сферическая поверхность охватывает заряд

Поэтому, согласно теореме Гаусса

Учитывая, что
, получим:

Напряжённость электростатического поля, внутри объемно заряженного шара

(r R ). (2.9)

.

Задача 2.3 . В поле бесконечно длинной плоскости с поверхностной плотностью заряда σ подвешен на нити маленький шарик массой m , имеющий заряд того же знака, что и плоскость. Найти заряд шарика, если нить образует с вертикалью угол α

Решение. Вернемся к разбору решения задачи 1.4. Разница заключается в том, что в задаче 1.4 сила
вычисляется по закону Кулона (1.2), а в задаче 2.3 – из определения напряженности электростатического поля (2.1)
. Напряженность электростатического поля бесконечной равномерно заряженной плоскости выведена с использованием теоремы Остроградского-Гаусса (2.4).

Поле плоскости однородно и не зависит от расстояния до плоскости. Из рис. 21:

.

 Обратите внимание , что для нахождения силы, действующей на заряд, помещенный в поле распределенного заряда, необходимо использовать формулу

,

а напряженность поля, созданного несколькими распределенными зарядами, находить по принципу суперпозиции. Поэтому последующие задачи посвящены нахождению напряженности электростатического поля распределенных зарядов с использованием теоремы Остроградского-Гаусса.

Задача 2.4. Опередить напряженность поля внутри и вне равномерно заряженной пластинки толщиной d , объемная плотность заряда внутри пластинки ρ . Построить график зависимости Е (х ).

Решение. Начало координат поместим в средней плоскости пластинки, а ось ОХ направим перпендикулярно к ней (рис. 22, а). Применим теорему Остроградского-Гаусса для расчета напряженности электростатического поля заряженной бесконечной плоскости, тогда

.

Из определения объемной плотности заряда

,

тогда для напряженности получим

.

Отсюда видно, что поле внутри пластинки зависит от х . Поле вне пластинки рассчитывается аналогично:

Отсюда видно, что поле вне пластинки однородно. График зависимости напряженности Е от х на рис. 22, б.

Задача 2.5. Поле создано двумя бесконечно длинными нитями, заряженными с линейными плотностями зарядов τ 1 и + τ 2 . Нити расположены перпендикулярно друг другу (рис. 23). Найти напряженность поля в точке, находящейся на расстоянии r 1 и r 2 от нитей.

Решение. Покажем на рисунке напряжённость поля, созданного каждой нитью отдельно. Вектор направленк первой нити, так как она заряжена отрицательно. Вектор направленот второй нити, так как она заряжена положительно. Векторы ивзаимно перпендикулярны, поэтому результирующий векторбудет являться гипотенузой прямоугольного треугольника. Модули векторовиопределяются по формуле (2.5).

По принципу суперпозиции

.

По теореме Пифагора

Задача 2.6 . Поле создано двумя заряженными бесконечно длинными полыми коаксиальными цилиндрами радиусами R 1 и R 2 > R 1 . Поверхностные плотности зарядов равны σ 1 и + σ 2 . Найти напряжённость электростатического поля в следующих точках:

а) точка А расположена на расстоянии d 1 < R 1 ;

б) точка В расположена на расстоянии R 1 < d 2 < R 2 ;

в) точка С расположена на расстоянии d 3 > R 1 > R 2 .

Расстояния отсчитываются от оси цилиндров.

Решение. Коаксиальные цилиндры – это цилиндры, имеющие общую ось симметрии. Сделаем рисунок и покажем на нем точки (рис. 24).

Е А = 0.

    точка В расположена внутри бóльшего цилиндра, поэтому в этой точке поле создаётся только меньшим цилиндром:

.

Выразим линейную плотность заряда через поверхностную плотность заряда. Для этого воспользуемся формулами (1.4) и (1.5), из которых выразим заряд:

Приравняем правые части и получим:

,

где S 1 – площадь поверхности первого цилиндра.

С учётом того, что
, окончательно получим:

    точка С расположена снаружи обоих цилиндров, поэтому поле создаётся обоими цилиндрами. По принципу суперпозиции:

.

С учётом направлений и расчётов, полученных выше, получим:

.

Задача 2.7 . Поле создано двумя заряженными бесконечно длинными параллельными плоскостями. Поверхностные плотности зарядов равны σ 1 и σ 2 > σ 1 . Найти напряжённость электростатического поля в точках, находящихся между пластинами и вне пластин. Решить задачу для двух случаев:

а) пластины одноимённо заряжены;

б) пластины разноимённо заряжены.

Решение. В векторном виде напряжённость результирующего поля в любом случае записывается одинаково. Согласно принципу суперпозиции:

.

Модули векторов ивычисляются по формуле (2.6).

а) Если плоскости заряжены одноимённо, то между плоскостями напряжённости направлены в разные стороны (рис. 26, а). Модуль результирующей напряжённости

Вне плоскостей напряжённости инаправлены в одну сторону. Так как поле бесконечных заряженных плоскостей однородно, то есть не зависит от расстояния до плоскостей, то в любой точке и слева и справа от плоскостей поле будет одинаково:

.

б) Если плоскости заряжены разноимённо, то, наоборот, между плоскостями напряжённости направлены в одну сторону (рис. 26, б), а вне плоскостей – в разные.

Жидкевич В. И. Электрическое поле плоскости // Фізіка: праблемы выкладання. - 2009. - № 6. - С. 19-23.

Задачи по электростатике можно разделить на две группы: задачи о точечных зарядах и задачи о заряженных телах, размеры которых нельзя не учитывать .

Решение задач по расчёту электрических полей и взаимодействий точечных зарядов основано на применении закона Кулона и не вызывает особых затруднений. Более сложным является определение напряжённости поля и взаимодействия заряженных тел конечных размеров: сферы, цилиндра, плоскости. При вычислении напряжённости электростатических полей различной конфигурации следует подчеркнуть важность принципа суперпозиции и использовать его при рассмотрении полей, созданных не только точечными зарядами, но и зарядами, распределёнными по поверхности и объёму. При рассмотрении действия поля на заряд формула F=qE в общем случае справедлива для точечных заряженных тел и только в однородном поле применима для тел любых размеров и формы, несущих заряд q.

Электрическое поле конденсатора получается в результате наложения двух полей, созданных каждой пластиной.

В плоском конденсаторе можно рассматривать одну пластину как тело с зарядом q 1 помещённое в электрическое поле напряжённостью Е 2 , созданное другой пластиной.

Рассмотрим несколько задач.

1. Бесконечная плоскость заряжена с поверхностной плотностью σ >0. Найдите напряжённость поля Е и потенциал ϕ по обе стороны плоскости, считая потенциал плоскости равным нулю. Постройте графики зависимостей Е(х), ϕ (х). Ось х перпендикулярна плоскости, точка х=0 лежит на плоскости.

Решение. Электрическое поле бесконечной плоскости является однородным и симметричным относительно плоскости. Его напряжённость Связь между напряжённостью и разностью потенциалов между двумя точками однородного электростатического поля выражается формулой где х - расстояние между точками, измеренное вдоль силовой линии. Тогда ϕ 2 = ϕ 1 -Eх . При х<0 при х>0 Зависимости Е(х) и ϕ (х) представлены на рисунке 1.

2. Две плоскопараллельные тонкие пластины, расположенные на малом расстоянии d друг от друга, равномерно заряжены зарядом поверхностной плотностью σ 1 и σ 2 . Найдите напряжённости поля в точках, лежащих между пластинами и с внешней стороны. Постройте график зависимости напряжённости Е(х) и потенциала ϕ (х), считая ϕ (0)=0. Рассмотрите случаи, когда: a) σ 1 =-σ 2 ; б) σ 1 = σ 2 ; в) σ 1 =3 σ 2 -

Решение. Так как расстояние между пластинами мало, то их можно рассматривать как бесконечные плоскости.

Напряжённость поля положительно заряженной плоскости равна и направлена от неё; напряжённость поля отрицательно заряженной плоскости направлена к ней.

Согласно принципу суперпозиции поле в любой рассматриваемой точке будет создаваться каждым из зарядов в отдельности.

а) Поля двух плоскостей, заряженных равными и противоположными по знаку зарядами (плоский конденсатор), складываются в области между плоскостями и взаимно уничтожаются во внешних областях (рис. 2, а).

При х <0 Е = 0, ϕ =0; при 0 d Е= 0, Графики зависимости напряжённости и потенциала от расстояния х приведены на рисунке 2, б, в.

Если плоскости конечных размеров, то поле между плоскостями не будет строго однородным, а поле вне плоскостей не будет точно равно нулю.

б) Поля плоскостей, заряженных равными по величине и знаку зарядами (σ 1 = σ 2 ), компенсируют друг друга в пространстве между плоскостями и складываются во внешних областях (рис. 3, а). При х<0 при 0d

Воспользовавшись графиком Е(х) (рис. 3, б), построим качественно график зависимости ϕ (х) (рис. 3, в).

в) Если σ 1 = σ 2 , то, учитывая направления полей и выбирая направление направо за положительное, находим:

Зависимость напряжённости Е от расстояния показана на рисунке 4.

3. На одной из пластин плоского конденсатора ёмкостью С находится заряд q 1 =+3q , а на другой q 2 =+ q. Определите разность потенциалов между пластинами конденсатора.

Решение. 1-й способ. Пусть площадь пластины конденсатора S, а расстояние между ними d. Поле внутри конденсатора однородное, поэтому разность потенциалов (напряжение) на конденсаторе можно определить по формуле U=E*d, где Е - напряжённость поля внутри конденсатора.

где Е 1 , Е 2 - напряжённости поля, создаваемого пластинами конденсатора.

Тогда

2-й способ. Добавим на каждую пластину заряд Тогда пластины конденсатора будут иметь заряды + q и -q. Поля одинаковых зарядов пластин внутри конденсатора компенсируют друг друга. Добавленные заряды не изменили поле между пластинами, а значит, и разность потенциалов на конденсаторе. U= q/C .

4. В пространство между обкладками незаряженного плоского конденсатора вносят тонкую металлическую пластину, имеющую заряд +q . Определите разность потенциалов между обкладками конденсатора.

Решение. Так как конденсатор не заряжен, то электрическое поле создаётся только пластиной, имеющей заряд q (рис. 5). Это поле однородное, симметричное относительно пластины, и его напряжённость Пусть потенциал металлической пластины равен ϕ . Тогда потенциалы обкладок А и В конденсатора будут равны ϕ- ϕ А = ϕ El 1 ; ϕ А = ϕ-El 1 ; ϕ- ϕ B = ϕ-El 2 ; ϕ B = ϕ-El 2 .

Разность потенциалов между обкладками конденсатора Если пластина находится на одинаковом расстоянии от обкладок конденсатора, то разность потенциалов между обкладками равна нулю.

5. В однородное электрическое поле напряжённостью Е 0 перпендикулярно силовым линиям помещают заряженную металлическую пластину с плотностью заряда на поверхности каждой стороны пластины σ (рис. 6). Определите напряжённость поля Е" внутри и снаружи пластины и поверхностную плотность зарядов σ 1 и σ 2 , которая возникнет на левой и правой сторонах пластины.

Решение. Поле внутри пластины равно нулю и является суперпозицией трёх полей: внешнего поля Е 0 , поля, создаваемого зарядами левой стороны пластины, и поля, создаваемого зарядами правой стороны пластины. Следовательно, где σ 1 и σ 2 - поверхностная плотность заряда на левой и правой сторонах пластины, которая возникает после внесения пластины в поле Е 0 . Суммарный заряд пластины не изменится, поэтому σ 1 + σ 2 =2 σ , откуда σ 1 = σ- ε 0 E 0 , σ 2 = σ + ε 0 E 0 . Поле снаружи пластины является суперпозицией поля Е 0 и поля заряженной пластины Е . Слева от пластины Справа от пластины

6. В плоском воздушном конденсаторе напряжённость поля Е= 10 4 В/м. Расстояние между обкладками d= 2 см. Чему будет равна разность потенциалов, если между пластинами параллельно им поместить металлический лист толщиной d 0 =0,5 см (рис. 7)?

Решение. Поскольку электрическое поле между пластинами однородное, то U=Ed, U=200 В.

Если между пластинами пометить металлический лист, то получается система из двух последовательно соединённых конденсаторов с расстоянием между пластинами d 1 и d 2 . Ёмкости этих конденсаторов Их общая ёмкость

Так как конденсатор отключён от источника тока, то заряд конденсатора при внесении металлического листа не меняется: q"=CU=С"U 1 ; где емкость конден сатора до внесения в него металлического листа. Получаем:

U 1 = 150 В.

7. На пластинах А и С, расположенных параллельно на расстоянии d= 8 см друг от друга, поддерживаются потенциалы ϕ 1 = 60 В и ϕ 2 =- 60 В соответственно. Между ними поместили заземлённую пластину D на расстоянии d 1 = 2 см от пластины А. На сколько изменилась напряжённость поля на участках AD и CD? Постройте графики зависимостей ϕ (x ) и Е(х).



© 2024 skypenguin.ru - Советы по уходу за домашними животными